require(bio.lobster)
require(parallel)
require(lobsterCatch)
require(devtools)
require(geosphere)
require(bio.utilities)
load_all('D:/git/lobsterCatch')
arena = matrix(0,200,200)
y=x=seq(5,195,10)
traps = expand.grid(x,y)
p = list()
p$nrowgrids = 200
p$ncolgrids = 200
p$ngrids=p$nrowgrids * p$ncolgrids
p$initlambda=.1
p$initD = 3
p$smult = 0.993
p$currentZoIInit = 1
p$trapEastStart = traps[,1]
p$trapNorthStart = traps[,2]
p$ntrapsstart = length(p$trapEastStart)
p$saturationThresholdStart = 5
p$how_closeStart = .01
p$dstepstart = 5
p$trapSaturationStart = T
p$tSteps = 50
p$realizations = 100
smult_start = seq(.9,1,length.out=8)
plist = list()
for(i in 1:length(smult_start)){
pp = p
pp$smult = smult_start[[i]]
plist[[i]]=pp
}
nCores = 8
cl <- makeCluster(nCores)
clusterEvalQ(cl,{require(lobsterCatch)
require(bio.lobster)
})
s=Sys.time()
out = parLapply(cl,plist,SimulateLobsterMovement )
Sys.time()-s
nCores = detectCores()
cl <- makeCluster(nCores)
clusterEvalQ(cl,{require(devtools)
load_all('~/git/lobsterCatch')
sink(paste0("~/tmp/output", Sys.getpid(), ".txt"))
})
out = parLapply(cl,plist, SimulateLobsterMovement)
stopCluster(cl)
saveRDS(out,'D:/Projects/LobsterCatchSimShrinkage.rds')
outM = list()
outD = list()
for(i in 1:length(smult_start)){
g = out[[i]]
g1 = lapply(g,mtr)
outM[[i]] = unlist(lapply(g1,mean))
outD[[i]] = unlist(lapply(g1,dispersion))
}
unlist(lapply(outM,mean))
unlist(lapply(outD,mean)))
unlist(lapply(outD,mean))
#############################################################################################################
###############################################################################################################
############SPLIT VARIABLES ACROSS ITERATIONS#####################################################################
#############################################################################################################
require(bio.lobster)
require(parallel)
require(lobsterCatch)
require(devtools)
load_all('D:/git/lobsterCatch')
arena = matrix(0,200,200)
y=x=seq(5,195,10)
traps = expand.grid(x,y)
p = list()
p$nrowgrids = 200
p$ncolgrids = 200
p$ngrids=p$nrowgrids * p$ncolgrids
p$initlambda=.1
p$initD = 3
p$smult = 0.993
p$currentZoIInit = 1
p$trapEastStart = traps[,1]
p$trapNorthStart = traps[,2]
p$ntrapsstart = length(p$trapEastStart)
p$saturationThresholdStart = 5
p$how_closeStart = .01
p$dstepstart = 5
p$trapSaturationStart = T
p$tSteps = 100
NVariation = 9
smult_start = seq(.8,1,length.out=NVariation)
nCores = detectCores()-1
plist = list()
splits = nCores/NVariation
Realizations = 21
smult_start = rep(smult_start,each=splits)
p$realizations = round(Realizations / splits)
for(i in 1:length(smult_start)){
pp = p
pp$smult = smult_start[[i]]
plist[[i]]=pp
}
cl <- makeCluster(nCores)
clusterEvalQ(cl,{require(devtools)
load_all('D:/git/lobsterCatch')
sink(paste0("D:/tmp/output", Sys.getpid(), ".txt"))
})
out = parLapply(cl,plist, SimulateLobsterMovement)
stopCluster(cl)
saveRDS(out,'D:/Projects/LobsterCatchSimShrinkageFixed.rds')
mtr = function(x) apply(x$traps,2,max)
outM = list()
outD = list()
oo = list()
iu = dim_list(out)
for(i in 1:nrow(iu)){
o = lapply(out[[i]],mtr)
outM[[i]] = unlist(lapply(o,mean))
outD[[i]] = unlist(lapply(o,dispersion))
}
f = data.frame(Mean = unlist(outM),Dis = unlist(outD),Smul = rep(smult_start,each=p$realizations)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.