R/g.part5.savetimeseries.R

Defines functions g.part5.savetimeseries

Documented in g.part5.savetimeseries

g.part5.savetimeseries = function(ts, LEVELS, desiredtz, rawlevels_fname,
                                  DaCleanFile = NULL,
                                  includedaycrit.part5 = 2/3,
                                  includenightcrit.part5 = 0,
                                  ID = NULL,
                                  params_output,
                                  params_247 = NULL,
                                  Lnames = NULL, timewindow = NULL,
                                  filename = "") {

  ms5rawlevels = data.frame(date_time = ts$time, class_id = LEVELS,
                            # class_name = rep("",Nts),
                            stringsAsFactors = FALSE)

  if (length(grep(pattern = " ", x = ts$time[1])) == 0) {
    ts$timestamp = as.POSIXct(ts$time, tz = desiredtz, format = "%Y-%m-%dT%H:%M:%S%z")
    ms5rawlevels$date_time = as.POSIXct(ms5rawlevels$date_time, 
                                        tz = desiredtz, format = "%Y-%m-%dT%H:%M:%S%z")
  } else {
    ts$timestamp = ts$time
  }
  # Create numeric time to faciltiate merging
  ts$timenum = as.numeric(ts$timestamp)
  epochSize = ts$timenum[2] - ts$timenum[1]
  ms5rawlevels$timenum = as.numeric(ms5rawlevels$date_time)
  mdat = merge(ts, ms5rawlevels, by = "timenum")
  rm(ts, ms5rawlevels)
  names(mdat)[which(names(mdat) == "nonwear")] = "invalidepoch"
  names(mdat)[which(names(mdat) == "diur")] = "SleepPeriodTime"
  mdat = mdat[,-which(names(mdat) == "date_time")]
  if ("require_complete_lastnight_part5" %in% names(params_output) &&
      params_output[["require_complete_lastnight_part5"]] == TRUE) {
    N_window0_at_end = which(rev(mdat$window) != 0)[1]
    N_hours_window0_at_end = ((N_window0_at_end * epochSize) / 3600)
    lastHour = as.numeric(format(mdat$timestamp[length(mdat$timestamp)], "%H"))
    # If last hour is less than 9 then we know recording ended between midnight and 9am
    # which means that sleep onset may not be reliably detected
    # If last window with a non-zero number ends after 6pm in the before last day
    # then that confirms that sleep was estimated fromt his incomplete night
    if ((timewindow == "MM" || timewindow == "OO") && lastHour < 9 &&
        N_hours_window0_at_end < 9 + 6) {
      mdat$window[which(mdat$window == max(mdat$window))] = 0 
    }
    # If last hour is less than 15 then we know recording ended between midnight and 3pm
    # which means that wakeup may not be reliably detected
    # If last window with a non-zero number ends after 6pm in the before last day
    # then that confirms that sleep was estimated from this incomplete night
    if (timewindow == "WW" && lastHour < 15 &&
        N_hours_window0_at_end < 15 + 6) {
      mdat$window[which(mdat$window == max(mdat$window))] = 0 
    }
  }
  
  # Add invalid day indicator
  mdat$invalid_wakinghours = mdat$invalid_sleepperiod =  mdat$invalid_fullwindow = 100
  window_starts = which(abs(diff(c(0, mdat$window, 0))) > 0) # first epoch of each window
  if (length(window_starts) > 0) {
    if (length(window_starts) > 1) {
      for (di in 1:(length(window_starts) - 1)) {
        window_indices = window_starts[di]:pmin((window_starts[di + 1] - 1), nrow(mdat))
        wake = which(mdat$SleepPeriodTime[window_indices] == 0)
        sleep = which(mdat$SleepPeriodTime[window_indices] == 1)
        mdat$invalid_wakinghours[window_indices] = round(mean(mdat$invalidepoch[window_indices[wake]]) * 100, digits = 2)
        mdat$invalid_sleepperiod[window_indices] = round(mean(mdat$invalidepoch[window_indices[sleep]]) * 100, digits = 2)
        mdat$invalid_fullwindow[window_indices] = round(mean(mdat$invalidepoch[window_indices]) * 100, digits = 2)
      }
    } else {
      wake = which(mdat$SleepPeriodTime == 0)
      sleep = which(mdat$SleepPeriodTime == 1)
      mdat$invalid_wakinghours = round(mean(mdat$invalidepoch[wake]) * 100, digits = 2)
      mdat$invalid_sleepperiod = round(mean(mdat$invalidepoch[sleep]) * 100, digits = 2)
      mdat$invalid_fullwindow = round(mean(mdat$invalidepoch) * 100, digits = 2)
    }
    # round acceleration values to 3 digits to reduce storage space
    mdat$ACC = round(mdat$ACC, digits = 3)
    # round some columns to reduce storage space
    if ("lightpeak" %in% names(mdat)) mdat$lightpeak = round(mdat$lightpeak)
    if ("temperature" %in% names(mdat)) mdat$temperature = round(mdat$temperature, digits = 2)
    if (params_output[["save_ms5raw_without_invalid"]] == TRUE) {
      # Remove days based on data_cleaning_file
      if (length(DaCleanFile) > 0) { 
        if (ID %in% DaCleanFile$ID) {
          days2exclude = DaCleanFile$day_part5[which(DaCleanFile$ID == ID)]
          if (length(days2exclude) > 0) {
            cut = which(mdat$window %in% days2exclude == TRUE)
            if (length(cut) > 0) mdat = mdat[-cut,] # remove days from which we already know that they are not going to be included (first and last day)       
          }
        }
      }
      # Reformat includedaycrit.part5 to maximum percentage non-wear during waking hours:
      if (includedaycrit.part5 >= 0 & includedaycrit.part5 <= 1) { # if includedaycrit.part5 is used as a ratio
        includedaycrit.part5 = includedaycrit.part5 * 100
      } else if (includedaycrit.part5 > 1 & includedaycrit.part5 <= 25) { # if includedaycrit.part5 is used like includedaycrit as a number of hours
        includedaycrit.part5 = (includedaycrit.part5 / 24) * 100
      }
      # Reformat includenightcrit.part5 to maximum percentage non-wear during waking hours:
      if (includenightcrit.part5 >= 0 & includenightcrit.part5 <= 1) { # if includenightcrit.part5 is used as a ratio
        includenightcrit.part5 = includenightcrit.part5 * 100
      } else if (includenightcrit.part5 > 1 & includenightcrit.part5 <= 25) { # if includenightcrit.part5 is used like includedaycrit as a number of hours
        includenightcrit.part5 = (includenightcrit.part5 / 24) * 100
      }
      maxpernwday = 100 - includedaycrit.part5
      maxpernwnight = 100 - includenightcrit.part5
      # Exclude days that have 100% nonwear over the full window or 100% over wakinghours
      cut = which(mdat$invalid_fullwindow == 100 |
                    mdat$invalid_wakinghours > maxpernwday |
                    mdat$invalid_sleepperiod > maxpernwnight |
                    mdat$window == 0)
      if (length(cut) > 0) mdat = mdat[-cut,] # remove days from which we already know that they are not going to be included (first and last day)
    }
    mdat$guider = ifelse(mdat$guider == 'sleeplog', yes = 1, # digitize guider to save storage space
                         no = ifelse(mdat$guider == 'HDCZA' | mdat$guider == 'HDCZA+invalid', yes = 2,
                                     no =  ifelse(mdat$guider == 'setwindow', yes = 3,
                                                  no = ifelse(mdat$guider == 'L512', yes = 4,
                                                              no = ifelse(mdat$guider == 'HorAngle' | mdat$guider == 'HorAngle+invalid', yes = 5,
                                                                          no = ifelse(mdat$guider == 'NotWorn' | mdat$guider == 'NotWorn+invalid', yes = 6,
                                                                                      no = 0))))))
    
    mdat = mdat[,-which(names(mdat) %in% c("timestamp","time"))]
    # re-oder columns
    if ("csv" %in% params_output[["save_ms5raw_format"]]) {
      # save to csv file
      fname = rawlevels_fname[grep("*csv$", rawlevels_fname)]
      data.table::fwrite(mdat, fname, row.names = F, sep = params_output[["sep_reports"]],
                         dec = params_output[["dec_reports"]])
    }
    if ("RData" %in% params_output[["save_ms5raw_format"]] || params_247[["part6HCA"]] == TRUE || params_247[["part6CR"]] == TRUE) {
      # only doing this for RData output, because it would affect file size too much in csv,
      # remember that this function can create many files: sample sizes times all combinations of thresholds.
      mdat$timestamp = as.POSIXct(mdat$timenum, origin = "1970-01-01",tz = desiredtz)
      rawlevels_fname = gsub(pattern = ".csv", replacement = ".RData", x = rawlevels_fname)
      fname = unique(rawlevels_fname[grep("*RData$", rawlevels_fname)])
      save(mdat, filename, Lnames, file = fname)
    }
    #===============================
    rm(mdat)
  }
  return()
}
wadpac/GGIR documentation built on March 5, 2025, 11 p.m.