HRcop | R Documentation |
The Hüsler–Reiss copula (Joe, 2014, p. 176) is
\mathbf{C}_{\Theta}(u,v) = \mathbf{HR}(u,v) = \mathrm{exp}\bigr[-x \Phi(X) - y\Phi(Y)\bigr]\mbox{,}
where \Theta \ge 0
, x = - \log(u)
, y = - \log(v)
, \Phi(.)
is the cumulative distribution function of the standard normal distribution, X
and Y
are defined as:
X = \frac{1}{\Theta} + \frac{\Theta}{2} \log\biggl(\frac{x}{y}\biggr)\mbox{\ and\ } Y = \frac{1}{\Theta} + \frac{\Theta}{2} \log\biggl(\frac{y}{x}\biggr)\mbox{.}
As \Theta \rightarrow 0^{+}
, the copula limits to independence (\mathbf{\Pi}
; P
). The copula here is a bivariate extreme value copula (BEV
), and the parameter \Theta
requires numerical methods.
HRcop(u, v, para=NULL, ...)
u |
Nonexceedance probability |
v |
Nonexceedance probability |
para |
A vector (single element) of parameters—the |
... |
Additional arguments to pass. |
Value(s) for the copula are returned.
W.H. Asquith
Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.
P
, GHcop
, GLcop
, tEVcop
# Parameter Theta = pi recovery through the Blomqvist Beta (Joe, 2014, p. 176)
qnorm(1 - log( 1 + blomCOP(cop=HRcop, para=pi) ) / ( 2 * log(2) ) )^(-1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.