ORDSUMcop | R Documentation |
Compute ordinal sums of a copula (Nelsen, 2006, p. 63) or M-ordinal sum of the summands (Klement et al., 2017) within \mathcal{I}^2
into n
partitions (possibly infinite) within \mathcal{I}^2
. According to Nelsen, letting \mathcal{J}
denote a partition of \mathcal{I}^2
and \mathcal{J}_i = [a_i,\, b_i]
be the i
th partition that does not overlap with others and letting also \mathbf{C}_i
be a copula for the i
th partition, then the ordinal sum of these \mathbf{C}_i
with parameters \Theta_i
with respect to \mathcal{J}_i
is the copula \mathbf{C}
given by
\mathbf{C}\bigl(u,v; \mathcal{J}_i, \mathbf{C}_i, \Theta_i, i \in 1,2,\cdots,n\bigr) = a_i + (b_i-a_i)\mathbf{C}_i\biggl(\frac{u-a_i}{b_i-a_i},\, \frac{v-a_i}{b_i-a_i}; \Theta_i\biggr)\ \mbox{for}\ (u,v) \in \mathcal{J}^2\mbox{,}
for points within the partitions, and for points otherwise outside the partitions the coupla is given by
\mathbf{C}\bigl(u,v; \mathcal{J}_i, \mathbf{C}_i, i \in 1,2,\cdots,n\bigr) = \mathbf{M}(u,v)\ \mathrm{for}\ (u,v) \ni \mathcal{J}^2\mbox{, and}
let \mathbf{C}_\mathcal{J}(u,v)
be a convenient abbreviation for the copula. Finally, Nelsen (2006, theorem 3.2.1) states that a copula is an ordinal sum if and only if for a t
if \mathbf{C}(t,t)=t
for t \in (0,1)
. The diagonal of a coupla can be useful for quick assessment (see Examples) of this theorem. (See ORDSUWcop
, W-ordinal sum of the summands.)
ORDSUMcop(u,v, para=list(cop=W, para=NA, part=c(0,1)), ...)
u |
Nonexceedance probability |
v |
Nonexceedance probability |
para |
A list of sublists for the coupla, parameters, and partitions (see Examples) and some attempt for intelligent in-fill of |
... |
Additional arguments to pass. |
Value(s) for the copula are returned.
W.H. Asquith
Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.
Klement, E.P., Kolesárová, A., Mesiar, R., Saminger-Platz, S., 2017, Copula constructions using ultramodularity (chap. 9) in Copulas and dependence models with applications—Contributions in honor of Roger B. Nelsen, eds. Flores, U.M., Amo Artero, E., Durante, F., Sánchez, J.F.: Springer, Cham, Switzerland, ISBN 978–3–319–64220–9, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/978-3-319-64221-5")}.
copBasic-package
, W_N5p12a
, ORDSUWcop
## Not run:
para <- list(cop=c(CLcop, M, PLcop, GHcop), para=list(4, NA, 0.1, c(3,4)),
part=list(c(0,0.25), c(0.25,0.35), c(0.35,0.85), c(0.85,1)))
UV <- simCOP(n=100, cop=ORDSUMcop, para=para, ploton=FALSE)
plot(c(0,1), c(0,1), xlab="U, NONEXCEEDANCE PROBABILITY", type="n",
ylab="V, NONEXCEEDANCE PROBABILITY")
for(k in seq_len(length(para$part))) { # to draw the partitions
a <- para$part[[k]][1]; b <- para$part[[k]][2]
polygon(c(a, b, b, a, a), c(a,a,b,b,a), lty=2, lwd=0.8, col="lightgreen")
text((a+b)/2, (a+b)/2, k, cex=3, col="blue") # numbered by partition
}
points(UV, pch=21, cex=0.8, col=grey(0.1), bg="white") #
## End(Not run)
## Not run:
para <- list(cop=c(GHcop), para=list(c(2,3)), # internally replicated
part=list(c(0,0.2), c(0.2,0.3), c(0.3,0.5), c(0.5,0.7), c(0.7,1)))
UV <- simCOP(n=100, cop=ORDSUMcop, para=para, ploton=FALSE)
plot(c(0,1), c(0,1), xlab="U, NONEXCEEDANCE PROBABILITY", type="n",
ylab="V, NONEXCEEDANCE PROBABILITY")
for(k in seq_len(length(para$part))) { # to draw the partitions
a <- para$part[[k]][1]; b <- para$part[[k]][2]
polygon(c(a, b, b, a, a), c(a,a,b,b,a), lty=2, lwd=0.8, col="lightgreen")
text((a+b)/2, (a+b)/2, k, cex=3, col="blue") # numbered by partition
}
points(UV, pch=21, cex=0.8, col=grey(0.1), bg="white") #
## End(Not run)
## Not run:
# In this example, it is important that the delt is of the resolution
# matching the edges of the partitions.
para <- list(cop=P, para=list(NULL),
part=list(c(0,0.257), c(0.257,0.358), c(0.358,1)))
DI <- diagCOP(cop=ORDSUMcop, para=para, delt=0.001)
if(sum(DI$diagcop == DI$t) >= 1) {
message("The ORDSUMcop() operation is an ordinal sum if there exists\n",
"a t=(0,1) exists such that C(t,t)=t by Nelsen (2006, theorem 3.2.1).")
}
abline(0,1, col="red") #
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.