qua.regressCOP | R Documentation |
Perform quantile regression (Nelsen, 2006, pp. 217–218) using a copula by numerical derivatives of the copula (derCOPinv
). If X
and Y
are random variables having quantile functions x(F)
and y(G)
and letting y=\tilde{y}(x)
denote a solution to \mathrm{Pr}[Y \le y\mid X = x] = F
, where F
is a nonexceedance probability. Then the curve y=\tilde{y}(x)
is the quantile regression curve of V
or Y
with respect to U
or X
, respectively. If F=1/2
, then median regression is performed (med.regressCOP
). Using copulas, the quantile regression is expressed as
\mathrm{Pr}[Y \le y\mid X = x] = \mathrm{Pr}[V \le G(y) \mid U = F(x)] = \mathrm{Pr}[V \le v\mid U = v] = \frac{\delta \mathbf{C}(u,v)}{\delta u}\mbox{,}
where v = G(y)
and u = F(x)
. The general algorithm is
Set \delta \mathbf{C}(u,v)/\delta u = F
,
Solve the regression curve v = \tilde{v}(u)
(provided by derCOPinv
), and
Replace u
by x(u)
and v
by y(v)
.
The last step is optional as step two produces the regression in probability space, which might be desired, and step 3 actually transforms the probability regressions into the quantiles of the respective random variables.
qua.regressCOP(f=0.5, u=seq(0.01,0.99, by=0.01), cop=NULL, para=NULL, ...)
f |
A single value of nonexceedance probability |
u |
Nonexceedance probability |
cop |
A copula function; |
para |
Vector of parameters or other data structure, if needed, to pass to the copula; and |
... |
Additional arguments to pass. |
An R data.frame
of the regressed probabilities of V
and provided U=u
values is returned.
W.H. Asquith
Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.
med.regressCOP
, derCOPinv
, qua.regressCOP.draw
## Not run:
# Use a positively associated Plackett copula and perform quantile regression
theta <- 10
R <- qua.regressCOP(cop=PLACKETTcop, para=theta) # 50th percentile regression
plot(R$U,R$V, type="l", lwd=6, xlim=c(0,1), ylim=c(0,1), col=8)
lines(R$U,(1+(theta-1)*R$U)/(theta+1), col=4, lwd=1) # theoretical for Plackett, see
# (Nelsen, 2006, p. 218)
R <- qua.regressCOP(f=0.90, cop=PLACKETTcop, para=theta) # 90th-percentile regression
lines(R$U,R$V, col=2, lwd=2)
R <- qua.regressCOP(f=0.10, cop=PLACKETTcop, para=theta) # 10th-percentile regression
lines(R$U,R$V, col=3, lty=2)
mtext("Quantile Regression V wrt U for Plackett copula")#
## End(Not run)
## Not run:
# Use a composite copula with two Placketts with compositing parameters alpha and beta.
para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop,
para1=0.04, para2=5, alpha=0.9, beta=0.6)
plot(c(0,1),c(0,1), type="n", lwd=3,
xlab="U, NONEXCEEDANCE PROBABILITY", ylab="V, NONEXCEEDANCE PROBABILITY")
# Draw the regression of V on U and then U on V (wrtV=TRUE)
qua.regressCOP.draw(cop=composite2COP, para=para, ploton=FALSE)
qua.regressCOP.draw(cop=composite2COP, para=para, wrtV=TRUE, lty=2, ploton=FALSE)
mtext("Composition of Two Plackett Copulas and Quantile Regression")#
## End(Not run)
## Not run:
# Use a composite copula with two Placketts with compositing parameters alpha and beta.
para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop,
para1=0.34, para2=50, alpha=0.63, beta=0.47)
D <- simCOP(n=3000, cop=composite2COP, para=para, cex=0.5)
qua.regressCOP.draw(cop=composite2COP, para=para, ploton=FALSE)
qua.regressCOP.draw(cop=composite2COP, para=para, wrtV=TRUE, lty=2, ploton=FALSE)
level.curvesCOP(cop=composite2COP, para=para, ploton=FALSE)
mtext("Composition of Two Plackett Copulas, Level Curves, Quantile Regression")
para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop, # Note the singularity
para1=0, para2=500, alpha=0.63, beta=0.47)
D <- simCOP(n=3000, cop=composite2COP, para=para, cex=0.5)
qua.regressCOP.draw(cop=composite2COP, para=para, ploton=FALSE)
qua.regressCOP.draw(cop=composite2COP, para=para, wrtV=TRUE, lty=2, ploton=FALSE)
level.curvesCOP(cop=composite2COP, para=para, ploton=FALSE)
mtext("Composition of Two Plackett Copulas, Level Curves, Quantile Regression")
pdf("quantile_regression_test.pdf")
for(i in 1:10) {
para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop, alpha=runif(1), beta=runif(1),
para1=10^runif(1,min=-4,max=0), para2=10^runif(1,min=0,max=4))
txts <- c("Alpha=", round(para$alpha, digits=4),
"; Beta=", round(para$beta, digits=4),
"; Theta1=", round(para$para1[1], digits=5),
"; Theta2=", round(para$para2[1], digits=2))
D <- simCOP(n=3000, cop=composite2COP, para=para, cex=0.5, col=3)
mtext(paste(txts, collapse=""))
qua.regressCOP.draw(f=c(seq(0.05, 0.95, by=0.05)),
cop=composite2COP, para=para, ploton=FALSE)
qua.regressCOP.draw(f=c(seq(0.05, 0.95, by=0.05)),
cop=composite2COP, para=para, wrtV=TRUE, ploton=FALSE)
level.curvesCOP(cop=composite2COP, para=para, ploton=FALSE)
}
dev.off() # done
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.