tEVcop | R Documentation |
The t-EV copula (Joe, 2014, p. 189) is a limiting form of the t-copula (multivariate t-distribution):
\mathbf{C}_{\rho,\nu}(u,v) = \mathbf{tEV}(u,v; \rho, \nu) =
\mathrm{exp}\bigl(-(x+y) \times B(x/(x+y); \rho, \nu)\bigr)\mbox{,}
where x = -\log(u)
, y = -\log(v)
, and letting \eta = \sqrt{(\nu+1)/(1-\rho^2)}
define
B(w; \rho, \nu) = wT_{\nu+1}\bigl(\eta[(w/[1-w])^{1/\nu}-\rho]\bigr) + (1-w)T_{\nu+1}\bigl(\eta[([1-w]/w)^{1/\nu}-\rho]\bigr)\mbox{,}
where T_{\nu+1}
is the cumulative distribution function of the univariate t-distribution with \nu-1
degrees of freedom. As \nu \rightarrow \infty
, the copula weakly converges to the Hüsler–Reiss copula (HRcop
) because the t-distribution converges to the normal (see Examples for a study of this copula).
The \mathbf{tEV}(u,v; \rho, \nu)
copula is a two-parameter option when working with extreme-value copula. There is a caveat though. Demarta and McNeil (2004) conclude that “the parameter of the Gumbel [GHcop
] or Galambos [GLcop
] A-functions [the Pickend dependence function and B-function by association] can always be chosen so that the curve is extremely close to that of the t-EV A-function for any values of \nu
and \rho
. The implication is that in all situations where the t-EV copula might be deemed an appropriate model then the practitioner can work instead with the simpler Gumbel or Galambos copulas.”
tEVcop(u, v, para=NULL, ...)
u |
Nonexceedance probability |
v |
Nonexceedance probability |
para |
A vector (two element) of parameters in |
... |
Additional arguments to pass. |
Value(s) for the copula are returned.
Note, Joe (2014) shows x = \log(u)
(note absence of the minus sign). This is not correct.
W.H. Asquith
Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.
Demarta, S., and McNeil, A.J., 2004, The t copula and related copulas: International Statistical Review, v. 33, no. 1, pp. 111–129, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1111/j.1751-5823.2005.tb00254.x")}
GHcop
, GLcop
, HRcop
## Not run:
tau <- 1/3 # Example from copula::evCopula.Rd
tev.cop <- copula::tevCopula(copula::iTau(copula::tevCopula(), tau))
copula::pCopula(c(0.1,.5), copula=tev.cop) # 0.07811367
tEVcop(0.1, 0.5, para=slot(tev.cop, "parameters")) # 0.07811367
## End(Not run)
## Not run:
nsim <- 2000; pargh <- c(5, 0.5, 0.5)
UV <- simCOP(nsim, cop=GHcop, para=pargh)
U <- lmomco::pp(UV[,1], sort=FALSE)
V <- lmomco::pp(UV[,2], sort=FALSE)
RT <- mleCOP(u=U, v=V, cop=tEVcop, init.para=c(0.5,log(4)),
parafn=function(k) return(c(k[1], exp(k[2]))))
partev <- RT$para
FT <- simCOP(nsim, cop=tEVcop, para=RT$para)
tauCOP(cop=GHcop, para=pargh )
tauCOP(cop=tEVcop, para=partev)
tauCOP(cop=GHcop, para=pargh ) # [1] 0.3003678
tauCOP(cop=tEVcop, para=partev) # [1] 0.3178904
densityCOPplot(cop=GHcop, para=pargh)
densityCOPplot(cop=tEVcop, para=partev, ploton=FALSE, contour.col="red") #
## End(Not run)
## Not run:
# A demonstration Joe (2014, p. 190) for which tEvcop() has
# upper tail dependence parameter as
para <- c(0.8, 10)
lamU <- 2*pt(-sqrt((para[2]+1)*(1-para[1])/(1+para[1])), para[2]+1)
"tEVcop.copula" <- function(u,v, para=NULL, ...) {
if(length(u)==1) u<-rep(u,length(v)); if(length(v)==1) v<-rep(v,length(u))
return(copula::pCopula(matrix(c(u,v), ncol=2),
tevCopula(param=para[1], df=para[2])))
}
lamU.copBasic <- taildepCOP(cop=tEVcop, para)$lambdaU
lamU.copula <- taildepCOP(cop=tEVcop.copula, para)$lambdaU
print(c(lamU, lamU.copBasic, lamU.copula))
#[1] 0.2925185 0.2925200 0.2925200 # So, we see that they all match.
## End(Not run)
## Not run:
# Convergence of tEVcop to HRcop as nu goes to infinity.
nu <- 10^(seq(-4, 2, by=0.1)) # nu right end point rho dependent
rho <- 0.7 # otherwise, expect to see 'zeros' errors on the plot()
# Compute Blomqvist Beta (fast computation is reason for choice)
btEV <- sapply(nu, function(n) blomCOP(tEVcop, para=c(rho, n)))
limit.thetas <- sqrt(2 / (nu*(1-rho))) # for nu --> infinity HRcop
thetas <- sapply(btEV, function(b) {
uniroot(function(l, blom=NA) { blom - blomCOP(HRcop, para=l) },
interval=c(0,10), blom=b)$root })
plot(limit.thetas, thetas, log="xy", type="b",
xlab="Theta of HRcop via limit nu --> infinity",
ylab="Theta from Blomqvist Beta equivalent HRcop to tEVcop")
abline(0,1)
mtext(paste0("Notice the 'weak' convergence to lower left, and \n",
"convergence increasing with rho"))
# Another reference of note
# https://mediatum.ub.tum.de/doc/1145695/1145695.pdf (p.39) #
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.