cor.network | R Documentation |
Differential correlation network analysis
cor.network(para, group, valueID = "value", cor.method = "spearman",
threshold = 0.1, p.adjust.methods = "BH", plot = TRUE,
graph_format = "gml", mark.groups = TRUE, top.groups = 1,
cluster.method = 1, find.largest.component = TRUE, ...)
para |
A metaXpara object |
group |
Samples used for plot |
valueID |
The name of the column that used for plot |
cor.method |
Method for correlation:"pearson","spearman" or "kendall" |
threshold |
A threshold of significance levels of differential correlation |
p.adjust.methods |
c("local", holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none") |
plot |
Whether to plot network figure |
cluster.method |
The function tries to find dense subgraph. 1=cluster_fast_greedy,2=cluster_walktrap,3=cluster_edge_betweenness, 4=cluster_optimal,5=cluster_leading_eigen,6=cluster_spinglass, 7=cluster_label_prop,8=cluster_louvain,9=cluster_infomap |
... |
Additional parameter |
The name of result file
Bo Wen wenbostar@gmail.com
para <- new("metaXpara")
pfile <- system.file("extdata/MTBLS79.txt",package = "metaX")
sfile <- system.file("extdata/MTBLS79_sampleList.txt",package = "metaX")
rawPeaks(para) <- read.delim(pfile,check.names = FALSE)
sampleListFile(para) <- sfile
para <- reSetPeaksData(para)
para <- missingValueImpute(para)
resfile <- cor.network(para,group=c("S","C"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.