cor.network: Differential correlation network analysis

View source: R/network.R

cor.networkR Documentation

Differential correlation network analysis

Description

Differential correlation network analysis

Usage

cor.network(para, group, valueID = "value", cor.method = "spearman",
  threshold = 0.1, p.adjust.methods = "BH", plot = TRUE,
  graph_format = "gml", mark.groups = TRUE, top.groups = 1,
  cluster.method = 1, find.largest.component = TRUE, ...)

Arguments

para

A metaXpara object

group

Samples used for plot

valueID

The name of the column that used for plot

cor.method

Method for correlation:"pearson","spearman" or "kendall"

threshold

A threshold of significance levels of differential correlation

p.adjust.methods

c("local", holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none")

plot

Whether to plot network figure

cluster.method

The function tries to find dense subgraph. 1=cluster_fast_greedy,2=cluster_walktrap,3=cluster_edge_betweenness, 4=cluster_optimal,5=cluster_leading_eigen,6=cluster_spinglass, 7=cluster_label_prop,8=cluster_louvain,9=cluster_infomap

...

Additional parameter

Value

The name of result file

Author(s)

Bo Wen wenbostar@gmail.com

Examples

para <- new("metaXpara")
pfile <- system.file("extdata/MTBLS79.txt",package = "metaX")
sfile <- system.file("extdata/MTBLS79_sampleList.txt",package = "metaX")
rawPeaks(para) <- read.delim(pfile,check.names = FALSE)
sampleListFile(para) <- sfile
para <- reSetPeaksData(para)
para <- missingValueImpute(para)
resfile <- cor.network(para,group=c("S","C"))

wenbostar/metaX documentation built on July 4, 2023, 7:50 p.m.