Description Usage Arguments Value Examples
Given a binary or ternary data matrix with class associations of samples, computes chi-squared tests for each feature between given groups
1 | computeChiSquaredTest(Mat, Groups, classes)
|
Mat |
Matrix of digitized binary or ternary data with each column corresponding to a sample and each row corresponding to a feature |
Groups |
Factor indicating class association of samples |
classes |
Vector of class labels; the test will be applied between the classes given. |
A data frame with columns 'statistic' and 'pval'.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | baseMat = breastTCGA_Mat[, breastTCGA_Group == "NORMAL"]
dataMat = breastTCGA_Mat[, breastTCGA_Group != "NORMAL"]
seMat.base = SummarizedExperiment(assays=list(data=baseMat))
seMat = SummarizedExperiment(assays=list(data=dataMat))
div = computeUnivariateDigitization(
seMat = seMat,
seMat.base = seMat.base,
parallel = TRUE
)
assays(seMat)$div = div$Mat.div
sel = which(colnames(seMat) %in% colnames(dataMat))
div.chi = computeChiSquaredTest(Mat=assays(seMat)$div,
Groups=breastTCGA_ER[sel],
classes=c("Positive", "Negative"))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.