Description Usage Arguments Value Note Author(s) References See Also Examples
View source: R/loglikLOOCVcontourVAR1fused.r
Evaluates the leave-one-out cross-validated log-likelihood of multiple jointly estimated VAR(1) models over a grid of the (fused) ridge penalty parameters (λ_a and λ_{f}) for the autoregression coefficient matrices \mathbf{A}_g, while keeping λ_{ω}, the penalty parameter of the inverse error covariance matrix \mathbf{Ω}_{\varepsilon} (=\mathbf{Σ_{\varepsilon}^{-1}}), fixed at a user-specified value. The result is plotted as a contour plot, which facilitates the choice of optimal penalty parameters. The function also works with a (possibly) unbalanced experimental set-up. The VAR(1)-processes are assumed to have mean zero.
1 2  | loglikLOOCVcontourVAR1fused(lambdaAgrid, lambdaFgrid, Y, id, 
                            lambdaP, figure=TRUE, verbose=TRUE, ...)
 | 
lambdaAgrid | 
  A   | 
lambdaFgrid | 
  A   | 
Y | 
  Three-dimensional   | 
id | 
 A vector with group indices comprising of integers only. First group is represented by '0', the next by '1', and so on until the last.  | 
lambdaP | 
  A   | 
figure | 
  A   | 
verbose | 
  A   | 
... | 
   Other arguments to be passed on (indirectly) to   | 
A list-object with slots:
lambdaA | 
 A   | 
lambdaF | 
 A   | 
llLOOCV | 
 A   | 
Internally, this function calls the loglikLOOCVVAR1-function, which evaluates the minus (!) LOOCV log-likelihood (for practical reasons). For interpretation purposes
loglikLOOCVcontourVAR1 provides the regular LOOCV log-likelihood (that is, without the minus).
Wessel N. van Wieringen <w.vanwieringen@vumc.nl>, Viktorian Miok.
Miok, V., Wilting, S.M., Van Wieringen, W.N. (2018), “Ridge estimation of network models from time-course omics data”, Biometrical Journal, <DOI:10.1002/bimj.201700195>.
loglikLOOCVcontourVAR1, loglikLOOCVcontourVARX1.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  | # set dimensions (p=covariates, n=individuals, T=time points)
p <- 3; n <- 4; T <- 10
# set model parameters
SigmaE <- diag(p)/4
A <- createA(p, "chain")
# generate data
Y <- dataVAR1(n, T, A, SigmaE)
## plot contour of cross-validated likelihood
## Not run:  lambdaAgrid <- seq(0.01, 1, length.out=20) 
## Not run:  lambdaPgrid <- seq(0.01, 1000, length.out=20) 
## Not run:  loglikLOOCVcontourVAR1(lambdaAgrid, lambdaPgrid, Y) 
## determine optimal values of the penalty parameters
## Not run: optLambdas <- constrOptim(c(1,1), loglikLOOCVVAR1, gr=NULL, 
## Not run:               ui=diag(2), ci=c(0,0), Y=Y, 
## Not run:               control=list(reltol=0.01))$par 
## add point of optimum
## Not run:  points(optLambdas[1], optLambdas[2], pch=20, cex=2, 
## Not run:  col="red") 
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.