Description Usage Arguments Value Author(s) References See Also Examples
Automatic penalty parameter selection for the VARX(1) model through maximization of the leave-one-out cross-validated (LOOCV) log-likelihood.
1 2 3  | optPenaltyVARX1(Y, X, lambdaMin, lambdaMax, 
                lambdaInit=(lambdaMin+lambdaMax)/2, 
                optimizer="nlm", ...)
 | 
Y | 
  Three-dimensional   | 
X | 
  Three-dimensional   | 
lambdaMin  | 
  A   | 
lambdaMax | 
  A   | 
lambdaInit  | 
  A   | 
optimizer | 
  A   | 
... | 
  Additional arguments passed on to the   | 
A numeric with the LOOCV optimal choice for the ridge penalty parameter.
Wessel N. van Wieringen <w.vanwieringen@vumc.nl>
Miok, V., Wilting, S.M., Van Wieringen, W.N. (2018), “Ridge estimation of network models from time-course omics data”, Biometrical Journal, <DOI:10.1002/bimj.201700195>.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  | # set dimensions (p=covariates, n=individuals, T=time points)
p <- 3; n <- 4; T <- 10
# set model parameters
SigmaE <- diag(p)/4
Ax     <- createA(3, "chain")
# generate time-varying covariate data
X <- dataVAR1(n, T, Ax, SigmaE)
# (auto)regression parameter matrices of VARX(1) model
A <- createA(p, topology="clique", nonzeroA=0.1, nClique=1)
B <- createA(p, topology="hub", nonzeroA=0.1, nHubs=1)
# generate data
Y <- dataVARX1(X, A, B, SigmaE, lagX=0)
# determine the optimal penalty parameter
optLambda <- optPenaltyVARX1(Y, X, rep(10^(-10), 3), rep(1000, 3), 
                             optimizer="nlm", lagX=0)
# fit VAR(1) model
ridgeVARX1(Y, X, optLambda[1], optLambda[2], optLambda[3], lagX=0)$A
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.