Description Usage Arguments Details Value Note Author(s) References See Also Examples
Ridge penalized maximum likelihood estimation of the parameters of the VAR(1), first-order vector auto-regressive, model. The VAR(1) model explains the current vector of observations \mathbf{Y}_{\ast,t+1} by a linear combination of the previous observation vector: \mathbf{Y}_{\ast,t+1} = \mathbf{A} \mathbf{Y}_{\ast,t} + \mathbf{\varepsilon}_{\ast,t+1}, where \mathbf{A} is the autoregression coefficient matrix and \mathbf{\varepsilon}_{\ast,t+1} the vector of errors (or innovations). The VAR(1)-process is assumed to have mean zero. The experimental design is allowed to be unbalanced.
1 2 3 4 5 6 7 8  | ridgeVAR1(Y, lambdaA=0, lambdaP=0, 
          targetA=matrix(0, dim(Y)[1], dim(Y)[1]), 
          targetP=matrix(0, dim(Y)[1], dim(Y)[1]), targetPtype="none",
          fitA="ml", zerosA=matrix(nrow=0, ncol=2), 
          zerosAfit="sparse", zerosP=matrix(nrow=0, ncol=2), 
          cliquesP=list(), separatorsP=list(), 
          unbalanced=matrix(nrow=0, ncol=2), diagP=FALSE, 
          efficient=TRUE, nInit=100, minSuccDiff=0.001)
 | 
Y | 
  Three-dimensional   | 
lambdaA | 
  Ridge penalty parameter (positive   | 
lambdaP | 
  Ridge penalty parameter (positive   | 
targetA | 
  Target   | 
targetP | 
  Target   | 
fitA | 
  A   | 
targetPtype | 
  A   | 
zerosA | 
  A   | 
zerosAfit | 
  A   | 
zerosP | 
  A   | 
cliquesP | 
  A   | 
separatorsP | 
  A   | 
unbalanced | 
  A   | 
diagP | 
  A   | 
efficient | 
  A   | 
nInit | 
  Maximum number of iterations (positive   | 
minSuccDiff | 
  Minimum distance (positive   | 
The ridge ML estimator employs the following estimator of the variance of the VAR(1) process:
\frac{1}{n (\mathcal{T} - 1)} ∑_{i=1}^{n} ∑_{t=2}^{\mathcal{T}} \mathbf{Y}_{\ast,i,t} \mathbf{Y}_{\ast,i,t}^{\mathrm{T}}.
This is used when efficient=FALSE. However, a more efficient estimator of this variance can be used
\frac{1}{n \mathcal{T}} ∑_{i=1}^{n} ∑_{t=1}^{\mathcal{T}} \mathbf{Y}_{\ast,i,t} \mathbf{Y}_{\ast,i,t}^{\mathrm{T}},
which is achieved by setting when efficient=TRUE. Both estimators are adjusted accordingly when dealing with an unbalanced design. 
A list-object with slots:
A | 
 Ridge ML estimate of the matrix \mathbf{A}, the   | 
P | 
 Ridge ML estimate of the inverse error covariance   | 
lambdaA | 
 Positive   | 
lambdaP | 
 Positive   | 
When the target of the precision matrix is specified through the targetPtype-argument, the target is data-driven (for both fitA="ss" and fitA="ml"). In particular, it is updated at each iteration when fitA="ml". 
Wessel N. van Wieringen <w.vanwieringen@vumc.nl>
Miok, V., Wilting, S.M., Van Wieringen, W.N. (2017), “Ridge estimation of the VAR(1) model and its time series chain graph from multivariate time-course omics data”, Biometrical Journal, 59(1), 172-191.
loglikLOOCVVAR1, ridgeP, default.target, ridgePchordal.
1 2 3 4 5 6 7 8 9 10 11 12  | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.