#' @title
#' Generate Prediction Model
#'
#' @description
#' Function to develop prediction model based on user's preferences.
#'
#' @param target A vector of target data.
#' @param input A vector, matrix, or dataframe of input data.
#' @param sl_lib_internal The internal library to be used by SuperLearner
#' @param ... Model related parameters should be provided.
#'
#' @return
#' prediction model
#'
#' @keywords internal
#'
train_it <- function(target, input,
sl_lib_internal=NULL, ...) {
# Passing packaging check() ----------------------------
sl_lib <- NULL
# ------------------------------------------------------
dot_args <- list(...)
arg_names <- names(dot_args)
for (i in arg_names){
assign(i,unlist(dot_args[i],use.names = FALSE))
}
platform_os <- .Platform$OS.type
pr_mdl <- SuperLearner::SuperLearner(Y=target,
X=data.frame(input),
SL.library=sl_lib_internal)
return(pr_mdl)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.