#' @name DAISIE_ML
#' @aliases DAISIE_ML_CS DAISIE_ML
#' @title Maximization of the loglikelihood under the DAISIE model with clade-specific
#' diversity-dependence
#' @description This function computes the maximum likelihood estimates of the parameters of
#' the DAISIE model with clade-specific diversity-dependence for data from
#' lineages colonizing an island. It also outputs the corresponding
#' loglikelihood that can be used in model comparisons.
#' The result of sort(c(idparsopt, idparsfix, idparsnoshift)) should be
#' identical to c(1:10). If not, an error is reported that the input is
#' incoherent. The same happens when the length of initparsopt is different
#' from the length of idparsopt, and the length of parsfix is different from
#' the length of idparsfix.\cr Including the 11th parameter (p_f) in either
#' idparsopt or idparsfix (and therefore initparsopt or parsfix) is optional.
#' If this parameter is not specified, then the information in the data is
#' used, otherwise the information in the data is overruled.
#'
#' @param datalist Data object containing information on colonisation and
#' branching times. This object can be generated using the DAISIE_dataprep
#' function, which converts a user-specified data table into a data object, but
#' the object can of course also be entered directly. It is an R list object
#' with the following elements.\cr The first element of the list has two three
#' components: \cr \cr \code{$island_age} - the island age \cr Then, depending
#' on whether a distinction between types is made, we have:\cr
#' \code{$not_present} - the number of mainland lineages that are not present
#' on the island \cr or:\cr \code{$not_present_type1} - the number of mainland
#' lineages of type 1 that are not present on the island \cr
#' \code{$not_present_type2} - the number of mainland lineages of type 2 that
#' are not present on the island \cr \cr The remaining elements of the list
#' each contains information on a single colonist lineage on the island and has
#' 5 components:\cr \cr \code{$colonist_name} - the name of the species or
#' clade that colonized the island \cr \code{$branching_times} - island age and
#' stem age of the population/species in the case of Non-endemic,
#' Non-endemic_MaxAge and Endemic anagenetic species. For cladogenetic species
#' these should be island age and branching times of the radiation including
#' the stem age of the radiation.\cr \code{$stac} - the status of the colonist
#' \cr \cr * Non_endemic_MaxAge: 1 \cr * Endemic: 2 \cr * Endemic&Non_Endemic:
#' 3 \cr * Non_Endemic: 4 \cr * Endemic_Singleton_MaxAge: 5 \cr *
#' Endemic_Clade_MaxAge: 6 \cr * Endemic&Non_Endemic_Clade_MaxAge: 7 \cr \cr
#' \code{$missing_species} - number of island species that were not sampled for
#' particular clade (only applicable for endemic clades) \cr \code{$type1or2} -
#' whether the colonist belongs to type 1 or type 2 \cr
#' @param datatype Sets the type of data: 'single' for a single island or
#' archipelago treated as one, and 'multiple' for multiple archipelagoes
#' potentially sharing the same parameters
#' @param initparsopt The initial values of the parameters that must be
#' optimized
#' @param idparsopt The ids of the parameters that must be optimized. The ids
#' are defined as follows: \cr \cr id = 1 corresponds to lambda^c (cladogenesis
#' rate) \cr id = 2 corresponds to mu (extinction rate) \cr id = 3 corresponds
#' to K (clade-level carrying capacity) \cr id = 4 corresponds to gamma
#' (immigration rate) \cr id = 5 corresponds to lambda^a (anagenesis rate) \cr
#' id = 6 corresponds to lambda^c (cladogenesis rate) for an optional subset of
#' the species \cr id = 7 corresponds to mu (extinction rate) for an optional
#' subset of the species\cr id = 8 corresponds to K (clade-level carrying
#' capacity) for an optional subset of the species\cr id = 9 corresponds to
#' gamma (immigration rate) for an optional subset of the species\cr id = 10
#' corresponds to lambda^a (anagenesis rate) for an optional subset of the
#' species\cr id = 11 corresponds to p_f (fraction of mainland species that
#' belongs to the second subset of species
#' @param idparsfix The ids of the parameters that should not be optimized,
#' e.g. c(1,3) if lambda^c and K should not be optimized.
#' @param parsfix The values of the parameters that should not be optimized
#' @param idparsnoshift For datatype = 'single' only: The ids of the parameters
#' that should not be different between two groups of species; This can only
#' apply to ids 6:10, e.g. idparsnoshift = c(6,7) means that lambda^c and mu
#' have the same values for both groups
#' @param idparsmat For datatype = 'multiple' only: Matrix containing the ids
#' of the parameters, linking them to initparsopt and parsfix. Per island
#' system we use the following order: \cr \cr * lac = (initial) cladogenesis
#' rate \cr * mu = extinction rate \cr * K = maximum number of species possible
#' in the clade \cr * gam = (initial) immigration rate \cr * laa = (initial)
#' anagenesis rate \cr Example: idparsmat = rbind(c(1,2,3,4,5),c(1,2,3,6,7))
#' has different rates of immigration and anagenesis for the two islands.
#' @param res Sets the maximum number of species for which a probability must
#' be computed, must be larger than the size of the largest clade
#' @param ddmodel Sets the model of diversity-dependence: \cr \cr ddmodel = 0 :
#' no diversity dependence \cr ddmodel = 1 : linear dependence in speciation
#' rate \cr ddmodel = 11: linear dependence in speciation rate and in
#' immigration rate \cr ddmodel = 2 : exponential dependence in speciation
#' rate\cr ddmodel = 21: exponential dependence in speciation rate and in
#' immigration rate\cr
#' @param cond cond = 0 : conditioning on island age \cr cond = 1 :
#' conditioning on island age and non-extinction of the island biota \cr
#' @param island_ontogeny type of island ontonogeny. If NA, then constant ontogeny is assumed
#' @param eqmodel Sets the equilibrium constraint that can be used during the
#' likelihood optimization. Only available for datatype = 'single'.\cr\cr
#' eqmodel = 0 : no equilibrium is assumed \cr eqmodel = 13 : near-equilibrium
#' is assumed on endemics using deterministic equation for endemics and
#' immigrants. Endemics must be within x_E of the equilibrium value\cr eqmodel
#' = 15 : near-equilibrium is assumed on endemics and immigrants using
#' deterministic equation for endemics and immigrants. Endemics must be within
#' x_E of the equilibrium value, while non-endemics must be within x_I of the
#' equilibrium value
#' @param x_E Sets the fraction of the equlibrium endemic diversity above which
#' the endemics are assumed to be in equilibrium; only active for eqmodel = 13
#' or 15
#' @param x_I Sets the fraction of the equlibrium non-endemic diversity above
#' which the system is assumed to be in equilibrium; only active for eqmodel =
#' 15
#' @param tol Sets the tolerances in the optimization. Consists of: \cr reltolx
#' = relative tolerance of parameter values in optimization \cr reltolf =
#' relative tolerance of function value in optimization \cr abstolx = absolute
#' tolerance of parameter values in optimization
#' @param maxiter Sets the maximum number of iterations in the optimization
#' @param methode Method of the ODE-solver. See package deSolve for details.
#' Default is "lsodes"
#' @param optimmethod Method used in likelihood optimization. Default is
#' "subplex" (see subplex package). Alternative is 'simplex' which was the
#' method in previous versions.
#' @param CS_version For internal testing purposes only. Default is 1, the
#' original DAISIE code.
#' @param verbose sets whether parameters and likelihood should be printed (1)
#' or not (0)
#' @param tolint Vector of two elements containing the absolute and relative
#' tolerance of the integration
#' @return The output is a dataframe containing estimated parameters and
#' maximum loglikelihood. \item{lambda_c}{ gives the maximum likelihood
#' estimate of lambda^c, the rate of cladogenesis} \item{mu}{ gives the maximum
#' likelihood estimate of mu, the extinction rate} \item{K}{ gives the maximum
#' likelihood estimate of K, the carrying-capacity} \item{gamma}{ gives the
#' maximum likelihood estimate of gamma, the immigration rate }
#' \item{lambda_a}{ gives the maximum likelihood estimate of lambda^a, the rate
#' of anagenesis} \item{lambda_c2}{ gives the maximum likelihood estimate of
#' lambda^c2, the rate of cladogenesis for the optional second group of
#' species} \item{mu2}{ gives the maximum likelihood estimate of mu2, the
#' extinction rate for the optional second group of species} \item{K2}{ gives
#' the maximum likelihood estimate of K2, the carrying-capacity for the
#' optional second group of species} \item{gamma2}{ gives the maximum
#' likelihood estimate of gamma2, the immigration rate for the optional second
#' group of species} \item{lambda_a2}{ gives the maximum likelihood estimate of
#' lambda^a2, the rate of anagenesis for the optional second group of species}
#' \item{loglik}{ gives the maximum loglikelihood} \item{df}{ gives the number
#' of estimated parameters, i.e. degrees of feedom} \item{conv}{ gives a
#' message on convergence of optimization; conv = 0 means convergence}
#' @author Rampal S. Etienne
#' @seealso \code{\link{DAISIE_loglik_all}}, \code{\link{DAISIE_sim}}
#' @references Valente, L.M., A.B. Phillimore and R.S. Etienne (2015).
#' Equilibrium and non-equilibrium dynamics simultaneously operate in the
#' Galapagos islands. Ecology Letters 18: 844-852. <DOI:10.1111/ele.12461>.
#' @keywords models
#' @examples
#'
#' cat("
#' ### When all species have the same rates, and we want to optimize all 5 parameters,
#' # we use:
#'
#' utils::data(Galapagos_datalist)
#' DAISIE_ML(
#' datalist = Galapagos_datalist,
#' initparsopt = c(2.5,2.7,20,0.009,1.01),
#' ddmodel = 11,
#' idparsopt = 1:5,
#' parsfix = NULL,
#' idparsfix = NULL
#' )
#'
#' ### When all species have the same rates, and we want to optimize all parameters
#' # except K (which we set equal to Inf), we use:
#'
#' utils::data(Galapagos_datalist)
#' DAISIE_ML(
#' datalist = Galapagos_datalist,
#' initparsopt = c(2.5,2.7,0.009,1.01),
#' idparsopt = c(1,2,4,5),
#' parsfix = Inf,
#' idparsfix = 3
#' )
#'
#' ### When all species have the same rates except that the finches have a different
#' # rate of cladogenesis, and we want to optimize all parameters except K (which we
#' # set equal to Inf), fixing the proportion of finch-type species at 0.163, we use:
#'
#' utils::data(Galapagos_datalist_2types)
#' DAISIE_ML(
#' datalist = Galapagos_datalist_2types,
#' initparsopt = c(0.38,0.55,0.004,1.1,2.28),
#' idparsopt = c(1,2,4,5,6),
#' parsfix = c(Inf,Inf,0.163),
#' idparsfix = c(3,8,11),
#' idparsnoshift = c(7,9,10)
#' )
#'
#' ### When all species have the same rates except that the finches have a different
#' # rate of cladogenesis, extinction and a different K, and we want to optimize all
#' # parameters, fixing the proportion of finch-type species at 0.163, we use:
#'
#' utils::data(Galapagos_datalist_2types)
#' DAISIE_ML(
#' datalist = Galapagos_datalist_2types,
#' ddmodel = 11,
#' initparsopt = c(0.19,0.09,0.002,0.87,20,8.9,15),
#' idparsopt = c(1,2,4,5,6,7,8),
#' parsfix = c(Inf,0.163),
#' idparsfix = c(3,11),
#' idparsnoshift = c(9,10)
#' )
#'
#'
#' ### When all species have the same rates except that the finches have a different
#' # rate of extinction, and we want to optimize all parameters except K (which we
#' # set equal to Inf), and we also# want to estimate the fraction of finch species
#' # in the mainland pool. we use:
#'
#' utils::data(Galapagos_datalist_2types)
#' DAISIE_ML(
#' datalist = Galapagos_datalist_2types,
#' initparsopt = c(2.48,2.7,0.009,1.01,2.25,0.163),
#' idparsopt = c(1,2,4,5,7,11),
#' parsfix = c(Inf,Inf),
#' idparsfix = c(3,8),
#' idparsnoshift = c(6,9,10)
#' )
#'
#' ### When we have two islands with the same rates except for immigration and anagenesis rate,
#' # and we want to optimize all parameters, we use:
#'
#' utils::data(Galapagos_datalist)
#' DAISIE_ML(
#' datalist = list(Galapagos_datalist,Galapagos_datalist),
#' datatype = 'multiple',
#' initparsopt = c(2.5,2.7,20,0.009,1.01,0.009,1.01),
#' idparsmat = rbind(1:5,c(1:3,6,7)),
#' idparsopt = 1:7,
#' parsfix = NULL,
#' idparsfix = NULL
#' )
#'
#' ### When we consider the four Macaronesia archipelagoes and set all parameters the same
#' # except for rates of cladogenesis, extinction and immigration for Canary Islands,
#' # rate of cladogenesis is fixed to 0 for the other archipelagoes,
#' # diversity-dependence is assumed to be absent
#' # and we want to optimize all parameters, we use:
#'
#' utils::data(Macaronesia_datalist)
#' DAISIE_ML(
#' datalist = Macaronesia_datalist,
#' datatype = 'multiple',
#' initparsopt = c(1.053151832,0.052148979,0.512939011,0.133766934,0.152763179),
#' idparsmat = rbind(1:5,c(6,2,3,7,5),1:5,1:5),
#' idparsopt = c(2,4,5,6,7),
#' parsfix = c(0,Inf),
#' idparsfix = c(1,3)
#' )
#'
#' ")
#'
#' @export DAISIE_ML_CS
#' @export DAISIE_ML
DAISIE_ML_CS <- DAISIE_ML <- function(
datalist,
datatype = 'single',
initparsopt,
idparsopt,
parsfix,
idparsfix,
idparsnoshift = 6:10,
idparsmat = NULL,
res = 100,
ddmodel = 0,
cond = 0,
island_ontogeny = NA,
eqmodel = 0,
x_E = 0.95,
x_I = 0.98,
tol = c(1e-04, 1e-05, 1e-07),
maxiter = 1000 * round((1.25)^length(idparsopt)),
methode = 'lsodes',
optimmethod = 'subplex',
CS_version = 1,
verbose = 0,
tolint = c(1E-16,1E-10)
)
{
if(datatype == 'single')
{
if(is.na(island_ontogeny))
{
out = DAISIE_ML1(datalist = datalist,
initparsopt = initparsopt,
idparsopt = idparsopt,
parsfix = parsfix,
idparsfix = idparsfix,
idparsnoshift = idparsnoshift,
res = res,
ddmodel = ddmodel,
cond = cond,
island_ontogeny = island_ontogeny,
eqmodel = eqmodel,
x_E = x_E,
x_I = x_I,
tol = tol,
maxiter = maxiter,
methode = methode,
optimmethod = optimmethod,
CS_version = CS_version,
verbose = FALSE,
tolint = tolint)
} else {
out = DAISIE_ML3(datalist = datalist,
initparsopt = initparsopt,
idparsopt = idparsopt,
parsfix = parsfix,
idparsfix = idparsfix,
res = res,
ddmodel = ddmodel,
cond = cond,
island_ontogeny = island_ontogeny,
tol = tol,
maxiter = maxiter,
methode = methode,
optimmethod = optimmethod,
CS_version = CS_version,
verbose = FALSE,
tolint = tolint)
}
} else {
out = DAISIE_ML2(datalist = datalist,
initparsopt = initparsopt,
idparsopt = idparsopt,
parsfix = parsfix,
idparsfix = idparsfix,
idparsmat = idparsmat,
res = res,
ddmodel = ddmodel,
cond = cond,
tol = tol,
maxiter = maxiter,
methode = methode,
optimmethod = optimmethod,
verbose = FALSE,
tolint = tolint)
}
return(out)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.