#' Fit generalized linear mixed model with known relationship matrices
#' under the null hypothesis for related samples.
#'
#' The \code{fit_null_glmmkin} function is a wrapper of the \code{\link{glmmkin}} function from
#' the \code{\link{GMMAT}} package that fits a regression model under the null hypothesis
#' for related samples, which provides the preliminary step for subsequent
#' variant-set tests in whole-genome sequencing data analysis. See \code{\link{glmmkin}} for more details.
#' @param fixed an object of class \code{\link{formula}} (or one that can be coerced to that class):
#' a symbolic description of the fixed effects model to be fitted.
#' @param data a data frame or list (or object coercible by \code{\link{as.data.frame}} to a data frame)
#' containing the variables in the model.
#' @param kins a known positive semi-definite relationship matrix
#' (e.g. kinship matrix in genetic association studies) or a list of known
#' positive semi-definite relationship matrices. The rownames and colnames of
#' these matrices must at least include all samples as specified in the \code{id} column
#' of the data frame \code{data}.
#' @param use_sparse a logical switch of whether the provided dense \code{kins} matrix should be
#' transformed to a sparse matrix (default = NULL).
#' @param kins_cutoff the cutoff value for clustering samples to make the output matrix sparse block-diagonal
#' (default = 0.022).
#' @param id a column in the data frame \code{data}, indicating the id of samples.
#' When there are duplicates in \code{id}, the data is assumed to be longitudinal with repeated measures.
#' @param random.slope an optional column indicating the random slope for time effect used
#' in a mixed effects model for longitudinal data. It must be included in the names of \code{data}.
#' There must be duplicates in \code{id} and \code{method.optim} must be "AI" (default = NULL).
#' @param groups an optional categorical variable indicating the groups used in a
#' heteroscedastic linear mixed model (allowing residual variances in different groups to be different).
#' This variable must be included in the names of \code{data}, and \code{family} must be "gaussian"
#' and \code{method.optim} must be "AI" (default = NULL).
#' @param family a description of the error distribution and link function to be used
#' in the model. This can be a character string naming a family function, a family
#' function or the result of a call to a family function. (See \code{\link{family}} for details of family functions).
#' @param method method of fitting the generalized linear mixed model. Either "REML" or "ML" (default = "REML").
#' @param method.optim optimization method of fitting the generalized linear mixed model.
#' Either "AI", "Brent" or "Nelder-Mead" (default = "AI").
#' @param maxiter a positive integer specifying the maximum number of iterations when
#' fitting the generalized linear mixed model (default = 500).
#' @param tol a positive number specifying tolerance, the difference threshold for parameter
#' estimates below which iterations should be stopped (default = 1e-5).
#' @param taumin the lower bound of search space for the variance component parameter \eqn{\tau} (default = 1e-5),
#' used when \code{method.optim} = "Brent". See Details.
#' @param taumax the upper bound of search space for the variance component parameter \eqn{\tau} (default = 1e5),
#' used when \code{method.optim} = "Brent". See Details.
#' @param tauregion the number of search intervals for the REML or ML estimate of the variance component
#' parameter \eqn{\tau} (default = 10), used when \code{method.optim} = "Brent". See Details.
#' @param verbose a logical switch for printing detailed information (parameter estimates in each iteration)
#' for testing and debugging purpose (default = FALSE).
#' @param ... additional arguments that could be passed to \code{\link{glm}}.
#' @return The function returns an object of the model fit from \code{\link{glmmkin}} (\code{obj_nullmodel}),
#' with additional elements indicating the samples are related (\code{obj_nullmodel$relatedness = TRUE}),
#' and whether the \code{kins} matrix is sparse when fitting the null model. See \code{\link{glmmkin}} for more details.
#' @references Chen, H., et al. (2016). Control for population structure and relatedness for binary traits
#' in genetic association studies via logistic mixed models. \emph{The American Journal of Human Genetics}, \emph{98}(4), 653-666.
#' (\href{https://doi.org/10.1016/j.ajhg.2016.02.012}{pub})
#' @references Chen, H., et al. (2019). Efficient variant set mixed model association tests for continuous and
#' binary traits in large-scale whole-genome sequencing studies. \emph{The American Journal of Human Genetics}, \emph{104}(2), 260-274.
#' (\href{https://doi.org/10.1016/j.ajhg.2018.12.012}{pub})
#' @references Chen, H. (2023). GMMAT: Generalized linear Mixed Model Association Tests Version 1.4.2.
#' (\href{https://cloud.r-project.org/web/packages/GMMAT/vignettes/GMMAT.pdf}{web})
#' @export
fit_null_glmmkin <- function(fixed, data = parent.frame(), kins, use_sparse = NULL,
kins_cutoff = 0.022, id, random.slope = NULL, groups = NULL,
family = binomial(link = "logit"), method = "REML",
method.optim = "AI", maxiter = 500, tol = 1e-5,
taumin = 1e-5, taumax = 1e5, tauregion = 10,
verbose = FALSE, ...){
if(!inherits(kins, "matrix") && !inherits(kins, "Matrix")){
stop("kins is not a matrix!")
}
else if(inherits(kins, "sparseMatrix")){
print("kins is a sparse matrix.")
obj_nullmodel <- glmmkin(fixed = fixed, data = data, kins = kins, id = id,
random.slope = random.slope, groups = groups,
family = family, method = method,
method.optim = method.optim, maxiter = maxiter,
tol = tol, taumin = taumin, taumax = taumax,
tauregion = tauregion, verbose = verbose, ...)
obj_nullmodel$sparse_kins <- TRUE
}else if(!is.null(use_sparse) && use_sparse){
print(paste0("kins is a dense matrix, transforming it into a sparse matrix using cutoff ", kins_cutoff, "."))
kins_sp <- makeSparseMatrix(kins, thresh = kins_cutoff)
if(inherits(kins_sp, "dsyMatrix") || kins_cutoff <= min(kins)){
stop(paste0("kins is still a dense matrix using cutoff ", kins_cutoff, ". Please try a larger kins_cutoff or use_sparse = FALSE!"))
}
rm(kins)
obj_nullmodel <- glmmkin(fixed = fixed, data = data, kins = kins_sp, id = id,
random.slope = random.slope, groups = groups,
family = family, method = method,
method.optim = method.optim, maxiter = maxiter,
tol = tol, taumin = taumin, taumax = taumax,
tauregion = tauregion, verbose = verbose, ...)
obj_nullmodel$sparse_kins <- TRUE
}else{
print("kins is a dense matrix.")
obj_nullmodel <- glmmkin(fixed = fixed, data = data, kins = kins, id = id,
random.slope = random.slope, groups = groups,
family = family, method = method,
method.optim = method.optim, maxiter = maxiter,
tol = tol, taumin = taumin, taumax = taumax,
tauregion = tauregion, verbose = verbose, ...)
obj_nullmodel$sparse_kins <- FALSE
}
obj_nullmodel$relatedness <- TRUE
return(obj_nullmodel)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.