#' @include utils.R
#'
#' @title T-learner, implemented via glmnet (lasso)
#'
#' @description T-learner learns the treated and control expected outcome respectively by fitting two separate models.
#'
#' @param x the input features
#' @param w the treatment variable (0 or 1)
#' @param y the observed response (real valued)
#' @param alpha tuning parameter for the elastic net
#' @param k_folds_mu1 number of folds for cross validation for the treated
#' @param k_folds_mu0 number of folds for cross validation for the control
#' @param lambda user-supplied lambda sequence for cross validation
#' @param lambda_choice how to cross-validate; choose from "lambda.min" or "lambda.1se"
#' @param penalty_factor user-supplied penalty factor, must be of length the same as number of features in x
#' @examples
#' \dontrun{
#' n = 100; p = 10
#'
#' x = matrix(rnorm(n*p), n, p)
#' w = rbinom(n, 1, 0_5)
#' y = pmax(x[,1], 0) * w + x[,2] + pmin(x[,3], 0) + rnorm(n)
#'
#' tlasso_fit = tlasso(x, w, y)
#' tlasso_est = predict(tlasso_fit, x)
#' }
#' @export
tlasso = function(x, w, y,
alpha = 1,
k_folds_mu1 = NULL,
k_folds_mu0 = NULL,
lambda = NULL,
lambda_choice = c("lambda.min", "lambda.1se"),
penalty_factor= NULL) {
input = sanitize_input(x,w,y)
x = input$x
w = input$w
y = input$y
if (!is.logical(w)) {
stop("w should be a logical vector")
}
lambda_choice = match.arg(lambda_choice)
x_1 = x[which(w==1),]
x_0 = x[which(w==0),]
y_1 = y[which(w==1)]
y_0 = y[which(w==0)]
nobs_1 = nrow(x_1)
nobs_0 = nrow(x_0)
pobs = ncol(x)
if (is.null(k_folds_mu1)) {
k_folds_mu1 = floor(max(3, min(10, nobs_1/4)))
}
if (is.null(k_folds_mu0)) {
k_folds_mu0 = floor(max(3, min(10, nobs_0/4)))
}
# fold ID for cross-validation; balance treatment assignments
foldid_1 = sample(rep(seq(k_folds_mu1), length = nobs_1))
foldid_0 = sample(rep(seq(k_folds_mu0), length = nobs_0))
if (is.null(penalty_factor) || (length(penalty_factor) != pobs)) {
penalty_factor = rep(1, pobs)
if (!is.null(penalty_factor) && length(penalty_factor) != pobs) {
warning("penalty_factor supplied is not of the same length as the number of columns in x. Using all ones instead.")
}
}
t_1_fit = glmnet::cv.glmnet(x_1, y_1, foldid = foldid_1, alpha = alpha, lambda = lambda, penalty.factor=penalty_factor)
t_0_fit = glmnet::cv.glmnet(x_0, y_0, foldid = foldid_0, alpha = alpha, lambda = lambda, penalty.factor=penalty_factor)
y_1_pred = predict(t_1_fit, newx = x, s = lambda_choice)
y_0_pred = predict(t_0_fit, newx = x, s = lambda_choice)
tau_hat = y_1_pred - y_0_pred
ret = list(t_1_fit = t_1_fit,
t_0_fit = t_0_fit,
y_1_pred = y_1_pred,
y_0_pred = y_0_pred,
tau_hat = tau_hat)
class(ret) <- "tlasso"
ret
}
#' predict for tlasso
#'
#' get estimated tau(x) using the trained tlasso model
#'
#' @param object a tlasso object
#' @param newx covariate matrix to make predictions on. If null, return the tau(x) predictions on the training data
#' @param s choose from "lambda.min" or "lambda.1se" for prediction
#' @param ... additional arguments (currently not used)
#'
#' @examples
#' \dontrun{
#' n = 100; p = 10
#'
#' x = matrix(rnorm(n*p), n, p)
#' w = rbinom(n, 1, 0_5)
#' y = pmax(x[,1], 0) * w + x[,2] + pmin(x[,3], 0) + rnorm(n)
#'
#' tlasso_fit = tlasso(x, w, y)
#' tlasso_est = predict(tlasso_fit, x)
#' }
#'
#'
#' @return vector of predictions
#' @export
predict.tlasso <- function(object,
newx = NULL,
s = c("lambda.min", "lambda.1se"),
...) {
s = match.arg(s)
if (!is.null(newx)) {
newx = sanitize_x(newx)
y_1_pred = predict(object$t_1_fit, newx = newx, s = s)
y_0_pred = predict(object$t_0_fit, newx = newx, s = s)
tau_hat = y_1_pred - y_0_pred
}
else {
tau_hat = object$tau_hat
}
return(tau_hat)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.