#' Train MMRDetect
#'
#' @param mutationVariable A list of input variables,"Del_rep_mean","RepIndel_num","MMR_sum","maxcossim"
#' @param classification Sample classification
#' @return trained model
#' @export
MMRDetect.train <- function(mutationVariable, classification) {
## match the data with classification
trainset = mutationVariable[,c("Sample","Del_rep_mean","RepIndel_num","MMR_sum","maxcossim")]
trainset = merge(trainset, classification[,c("Sample","MSI_status")], by="Sample")
if(nrow(trainset)<50){
warning('training set size < 50')
}
# normalize RepIndel_num and MMR_sum
trainset$RepIndel_num <- trainset$RepIndel_num/max(trainset$RepIndel_num)
trainset$MMR_sum <- trainset$RepIndel_num/max(trainset$MMR_sum)
## build model with trainset
trainset$MSI_status<-as.factor(trainset$MSI_status)
glm_model_logit = stats::glm(MSI_status~., data = trainset, family = binomial(link="logit"))
glm_model_logit
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.