Description Usage Arguments Value Examples
This is a function that analyse the MCMC sampling result by computing the posterior mean, median and credible intervals.
1 | dlanalysis(dlresult,alpha=0.05)
|
dlresult |
Posterior samples of beta. A large matrix (nmc/thin)*p |
alpha |
Level for the credible intervals. For example,the default is alpha = 0.05 means 95% credible intervals. |
betamean |
Posterior mean of beta, a p*1 vector. |
LeftCI |
The left bounds of the credible intervals. |
RightCI |
The right bounds of the credible intervals. |
betamedian |
Posterior median of Beta, a p*1 vector. |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | ## Not run:
rho=0.5
p=1000
n=100
#set up correlation matrix
m<-matrix(NA,p,p)
for(i in 1:p){
for(j in i:p)
m[i,j]=rho^(j-i)}
m[lower.tri(m)]<-t(m)[lower.tri(m)]
#generate x
library("mvtnorm")
x=rmvnorm(n,mean=rep(0,p),sigma=m)
#generate beta
beta=c(rep(0,10),runif(n=5,min=-1,max=1),rep(0,20),runif(n=5,min=-1,max=1),rep(0,p-40))
#generate y
y=x%*%beta+rnorm(n)
hyper=dlhyper(x,y)
dlresult=dl(x,y,hyper=hyper)
da=dlanalysis(dlresult,alpha=0.05)
da$betamean
da$betamedian
da$LeftCI
da$RightCI
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.