Description Usage Arguments Value Examples
This is a function using the algorithm doing variable selection via penalized credible interval proposed by Bondell et al. (2012). The computation of the proposed sequence is doing matrix computing and using existing LASSO software.
1 | dlvs(dlresult)
|
dlresult |
Posterior samples of beta. A large matrix (nmc/thin)*p |
betatil |
Variable selection result of beta, a p*1 vector. Most of the values shrinks to 0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | ## Not run:
rho=0.5
p=1000
n=100
#set up correlation matrix
m<-matrix(NA,p,p)
for(i in 1:p){
for(j in i:p)
m[i,j]=rho^(j-i)}
m[lower.tri(m)]<-t(m)[lower.tri(m)]
#generate x
library("mvtnorm")
x=rmvnorm(n,mean=rep(0,p),sigma=m)
#generate beta
beta=c(rep(0,10),runif(n=5,min=-1,max=1),rep(0,20),runif(n=5,min=-1,max=1),rep(0,p-40))
#generate y
y=x%*%beta+rnorm(n)
hyper=dlhyper(x,y)
dlresult=dl(x,y,hyper=hyper)
dlvs(dlresult)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.