#' standardCV_core
#'
#' Cross-validation method, added here as an example.
#' Parameters are described in ?agghoo and ?AgghooCV
standardCV_core <- function(data, target, task, gmodel, params, loss, CV) {
n <- nrow(data)
shuffle_inds <- NULL
if (CV$type == "vfold" && CV$shuffle)
shuffle_inds <- sample(n, n)
list_testinds <- list()
for (v in seq_len(CV$V))
list_testinds[[v]] <- get_testIndices(n, CV, v, shuffle_inds)
gmodel <- agghoo::Model$new(data, target, task, gmodel, params)
best_error <- Inf
best_p <- NULL
for (p in seq_len(gmodel$nmodels)) {
error <- Reduce('+', lapply(seq_len(CV$V), function(v) {
testIdx <- list_testinds[[v]]
d <- splitTrainTest(data, target, testIdx)
model_pred <- gmodel$get(d$dataTrain, d$targetTrain, p)
prediction <- model_pred(d$dataTest)
loss(prediction, d$targetTest)
}) )
if (error <= best_error) {
if (error == best_error)
best_p[[length(best_p)+1]] <- p
else {
best_p <- list(p)
best_error <- error
}
}
}
chosenP <- best_p[[ sample(length(best_p), 1) ]]
list(model=gmodel$get(data, target, chosenP), param=gmodel$getParam(chosenP))
}
#' CVvoting_core
#'
#' "voting" cross-validation method, added here as an example.
#' Parameters are described in ?agghoo and ?AgghooCV
CVvoting_core <- function(data, target, task, gmodel, params, loss, CV) {
CV <- checkCV(CV)
n <- nrow(data)
shuffle_inds <- NULL
if (CV$type == "vfold" && CV$shuffle)
shuffle_inds <- sample(n, n)
gmodel <- agghoo::Model$new(data, target, task, gmodel, params)
bestP <- rep(0, gmodel$nmodels)
for (v in seq_len(CV$V)) {
test_indices <- get_testIndices(n, CV, v, shuffle_inds)
d <- splitTrainTest(data, target, test_indices)
best_p <- NULL
best_error <- Inf
for (p in seq_len(gmodel$nmodels)) {
model_pred <- gmodel$get(d$dataTrain, d$targetTrain, p)
prediction <- model_pred(d$dataTest)
error <- loss(prediction, d$targetTest)
if (error <= best_error) {
if (error == best_error)
best_p[[length(best_p)+1]] <- p
else {
best_p <- list(p)
best_error <- error
}
}
}
for (p in best_p)
bestP[p] <- bestP[p] + 1
}
# Choose a param at random in case of ex-aequos:
maxP <- max(bestP)
chosenP <- sample(which(bestP == maxP), 1)
list(model=gmodel$get(data, target, chosenP), param=gmodel$getParam(chosenP))
}
#' standardCV_run
#'
#' Run and eval the standard cross-validation procedure.
#' Parameters are rather explicit except "floss", which corresponds to the
#' "final" loss function, applied to compute the error on testing dataset.
standardCV_run <- function(
dataTrain, dataTest, targetTrain, targetTest, floss, verbose, ...
) {
args <- list(...)
task <- checkTask(args$task, targetTrain)
modPar <- checkModPar(args$gmodel, args$params)
loss <- checkLoss(args$loss, task)
CV <- checkCV(args$CV)
s <- standardCV_core(
dataTrain, targetTrain, task, modPar$gmodel, modPar$params, loss, CV)
if (verbose)
print(paste( "Parameter:", s$param ))
p <- s$model(dataTest)
err <- floss(p, targetTest)
if (verbose)
print(paste("error CV:", err))
invisible(err)
}
#' CVvoting_run
#'
#' Run and eval the voting cross-validation procedure.
#' Parameters are rather explicit except "floss", which corresponds to the
#' "final" loss function, applied to compute the error on testing dataset.
CVvoting_run <- function(
dataTrain, dataTest, targetTrain, targetTest, floss, verbose, ...
) {
args <- list(...)
task <- checkTask(args$task, targetTrain)
modPar <- checkModPar(args$gmodel, args$params)
loss <- checkLoss(args$loss, task)
CV <- checkCV(args$CV)
s <- CVvoting_core(
dataTrain, targetTrain, task, modPar$gmodel, modPar$params, loss, CV)
if (verbose)
print(paste( "Parameter:", s$param ))
p <- s$model(dataTest)
err <- floss(p, targetTest)
if (verbose)
print(paste("error CV:", err))
invisible(err)
}
#' agghoo_run
#'
#' Run and eval the agghoo procedure.
#' Parameters are rather explicit except "floss", which corresponds to the
#' "final" loss function, applied to compute the error on testing dataset.
agghoo_run <- function(
dataTrain, dataTest, targetTrain, targetTest, floss, verbose, ...
) {
args <- list(...)
CV <- checkCV(args$CV)
# Must remove CV arg, or agghoo will complain "error: unused arg"
args$CV <- NULL
a <- do.call(agghoo, c(list(data=dataTrain, target=targetTrain), args))
a$fit(CV)
if (verbose) {
print("Parameters:")
print(unlist(a$getParams()))
}
pa <- a$predict(dataTest)
err <- floss(pa, targetTest)
if (verbose)
print(paste("error agghoo:", err))
invisible(err)
}
#' compareTo
#'
#' Compare a list of learning methods (or run only one), on data/target.
#'
#' @param data Data matrix or data.frame
#' @param target Target vector (generally)
#' @param method_s Either a single function, or a list
#' (examples: agghoo_run, standardCV_run)
#' @param rseed Seed of the random generator (-1 means "random seed")
#' @param floss Loss function to compute the error on testing dataset.
#' @param verbose TRUE to request methods to be verbose.
#' @param ... arguments passed to method_s function(s)
#'
#' @export
compareTo <- function(
data, target, method_s, rseed=-1, floss=NULL, verbose=TRUE, ...
) {
if (rseed >= 0)
set.seed(rseed)
n <- nrow(data)
test_indices <- sample( n, round(n / ifelse(n >= 500, 10, 5)) )
d <- splitTrainTest(data, target, test_indices)
# Set error function to be used on model outputs (not in core method)
task <- checkTask(list(...)$task, target)
if (is.null(floss)) {
floss <- function(y1, y2) {
ifelse(task == "classification", mean(y1 != y2), mean(abs(y1 - y2)))
}
}
# Run (and compare) all methods:
runOne <- function(o) {
o(d$dataTrain, d$dataTest, d$targetTrain, d$targetTest, floss, verbose, ...)
}
errors <- c()
if (is.list(method_s))
errors <- sapply(method_s, runOne)
else if (is.function(method_s))
errors <- runOne(method_s)
invisible(errors)
}
#' compareMulti
#'
#' Run compareTo N times in parallel.
#'
#' @inheritParams compareTo
#' @param N Number of calls to method(s)
#' @param nc Number of cores. Set to parallel::detectCores() if undefined.
#' Set it to any value <=1 to say "no parallelism".
#' @param verbose TRUE to print task numbers and "Errors:" in the end.
#'
#' @export
compareMulti <- function(
data, target, method_s, N=100, nc=NA, floss=NULL, verbose=TRUE, ...
) {
if (is.na(nc))
nc <- parallel::detectCores()
# "One" comparison for each method in method_s (list)
compareOne <- function(n) {
if (verbose)
print(n)
compareTo(data, target, method_s, n, floss, verbose=FALSE, ...)
}
errors <- if (nc >= 2) {
parallel::mclapply(1:N, compareOne, mc.cores = nc)
} else {
lapply(1:N, compareOne)
}
if (verbose)
print("Errors:")
Reduce('+', errors) / N
}
#' compareRange
#'
#' Run compareMulti on several values of the parameter V.
#'
#' @inheritParams compareMulti
#' @param V_range Values of V to be tested.
#'
#' @export
compareRange <- function(
data, target, method_s, N=100, nc=NA, floss=NULL, V_range=c(10,15,20), ...
) {
args <- list(...)
# Avoid warnings if V is left unspecified:
CV <- suppressWarnings( checkCV(args$CV) )
errors <- lapply(V_range, function(V) {
args$CV$V <- V
do.call(compareMulti, c(list(data=data, target=target, method_s=method_s,
N=N, nc=nc, floss=floss, verbose=F), args))
})
print(paste(V_range, errors))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.