EM: EM clustering for data set

Description Usage Arguments Value Examples

View source: R/EM.R

Description

EM clustering for data set

Usage

1
EM(K, mean, sigma, Y)

Arguments

K

number of clusters

mean

initialization of means of Gaussian clusters

sigma

initialization of variance of Gaussian clusters

Y

the data matrix

Value

The final mean and variance and clustering results

Examples

1
2
3
4
5
6
7
8
9
A = matrix(c(1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1),4,4)
K = 2
p = 4
prob = runif(K, min=0.1, max = 0.9)
prob = prob/sum(prob)
mean = matrix(rnorm(K*p), K, p)
sigma = array(rep(diag(p), K), dim = c(p, p, K))
ans = EM(prob, mean, sigma, A)
table(ans$class)

yehanxuan/tamu-689-final documentation built on Dec. 8, 2019, 5:25 p.m.