seq_aipe_cor: seq_aipe_cor

View source: R/seq_aipe_cor.R

seq_aipe_corR Documentation

seq_aipe_cor

Description

Sequential approach to Accuracy in Parameter Estimation for Effect Sizes (AIPE): Correlation Coefficient

Usage

seq_aipe_cor(
  alpha = 0.05,
  omega,
  data = NULL,
  Group.1 = NULL,
  Group.2 = NULL,
  pilot = FALSE,
  m0 = 4,
  method = c("pearson", "kendall", "spearman"),
  na.rm = TRUE
)

Arguments

alpha

The significance level., default is 0.05.

omega

omega

data

The data set, should have two columns.

Group.1

The data for the first group.

Group.2

The data for the second group.

pilot

Should a pilot sample be generated.

m0

The initial sample size.

method

The correlation method to be used.

na.rm

This parameter controls whether NA values are removed from the data prior to calculation. Default is TRUE.

Value

The current sample size, the current correlation and an indicator of if the criterion has been satisfied.

Author(s)

Ken Kelley KKelley@nd.edu, Francis Bilson Darku FBilsonD@nd.edu, Bhargab Chattopadhyay Bhargab@iiitvadodara.ac.in

References

Kelley, K., Darku, F. B., \& Chattopadhyay, B. (2018). Accuracy in parameter estimation for a general class of effect sizes: A sequential approach. Psychological Methods, 23, 226–243.

Kelley, K., Darku, F. B., \& Chattopadhyay, B. (2019). Sequential Accuracy in parameter estimation for population correlation coefficients. Psychological Methods, 24, 492–515.

Examples

pilot_ss <- seq_aipe_cor(alpha=0.05, omega=0.2, pilot=TRUE)
  SLS <- matrix(c(rexp(pilot_ss, rate=0.05),
  rexp(pilot_ss, rate=0.05)), ncol = 2)
seq_aipe_cor(alpha=0.05, omega=0.2,data = SLS)


yelleKneK/SMSD documentation built on Nov. 23, 2022, 6:40 p.m.