seq_aipe_slr_slope: seq_aipe_slr_slope

View source: R/seq_aipe_slr_slope.R

seq_aipe_slr_slopeR Documentation

seq_aipe_slr_slope

Description

Sequential approach to Accuracy in Parameter Estimation for Effect Sizes (AIPE): Simple Linear Regression Slope

Usage

seq_aipe_slr_slope(
  alpha = 0.05,
  omega,
  data = NULL,
  x = NULL,
  y = NULL,
  pilot = FALSE,
  m0 = 4,
  na.rm = TRUE
)

Arguments

alpha

The significance level., default is 0.05.

omega

omega

data

The data for which to calculate the slope.

x

The data vector for the independent variable.

y

The data vector for the response.

pilot

Should a pilot sample be generated.

m0

The initial sample size.

na.rm

This parameter controls whether NA values are removed from the data prior to calculation. Default is TRUE.

Value

The current sample size, the calculated slope, and an indicator of if the criterion is satisfied.

Author(s)

Ken Kelley KKelley@nd.edu, Francis Bilson Darku FBilsonD@nd.edu, Bhargab Chattopadhyay Bhargab@iiitvadodara.ac.in

Examples

pilot_ss <- seq_aipe_slr_slope(alpha=0.05, omega=0.2, pilot=TRUE)
SLS <- matrix( rnorm(pilot_ss[1],mean=0,sd=1),
 rnorm(pilot_ss[1], mean = 0, sd = 1), nrow=20, ncol= 2)
seq_aipe_slr_slope(alpha=0.05, omega=0.2,data = SLS)


yelleKneK/SMSD documentation built on Nov. 23, 2022, 6:40 p.m.