seq_ubdes_norm: seq_ubdes_norm

View source: R/seq_ubdes_norm.R

seq_ubdes_normR Documentation

seq_ubdes_norm

Description

Unbalanced Design using Purely Sequential approach for two different size sets of normal random variables

Usage

seq_ubdes_norm(
  data,
  C,
  K,
  w,
  alpha,
  pilot = FALSE,
  verbose = FALSE,
  na.rm = TRUE
)

Arguments

data

The data matrix for which to calculate the

C

A data frame.

K

K

w

The risk bound,A non-negative integer greater than zero.

alpha

The significance level. A value between 0 and 1.

pilot

Should a pilot sample be generated. True/False value. default value is FALSE.

verbose

Should the criterion be printed. Default is FALSE.

na.rm

This parameter controls whether NA values are removed from the data prior to calculation. Default is TRUE.

Value

The calculated mean and an indicator of if the criterion is satisfied.

Author(s)

Ken Kelley KKelley@nd.edu, Francis Bilson Darku FBilsonD@nd.edu, Bhargab Chattopadhyay Bhargab@iiitvadodara.ac.in, Neetu Shah 201451015@iiitvadodara.ac.in

References

Ken Kelley, Francis Bilson Darku, and Bhargab Chattopadhyay. (2018). Accuracy in Parameter Estimation for a General Class of Effect Sizes: A Sequential Approach. Psychological Methods, 23, 226–243.

Examples

C <- matrix(c(2,3), nrow=2)
pilot_ss <- seq_ubdes_norm(alpha=0.05, w=4, C=C, pilot=TRUE)
SLS <- matrix( rnorm(pilot_ss[1],mean=0,sd=1), rnorm(pilot_ss[2],
mean = 0, sd = 1), nrow=2,ncol=2)
seq_ubdes_norm(data=SLS, C=C, 2, w=4, alpha=0.05, pilot=FALSE)


yelleKneK/SMSD documentation built on Nov. 23, 2022, 6:40 p.m.