seq_mr_dfr_mean_arb: seq_mr_dfr_mean_arb

View source: R/seq_mr_dfr_mean_arb.R

seq_mr_dfr_mean_arbR Documentation

seq_mr_dfr_mean_arb

Description

Purely Sequential approach to Get Minimum Risk Point Estimation for the mean of distribution free random variables with arbitrary variance.

Usage

seq_mr_dfr_mean_arb(
  data,
  A,
  c,
  gamma,
  pilot = FALSE,
  verbose = FALSE,
  na.rm = TRUE
)

Arguments

data

The data for which to calculate the confidence interval. A numeric vector.

A

The loss function constant.

c

The cost of unit sample.

gamma

gamma

pilot

Should a pilot sample be generated. True/False value. default value is FALSE.

verbose

Should the criterion be printed. Default is FALSE.

na.rm

This parameter controls whether NA values are removed from the data prior to calculation. Default is TRUE.

Value

The calculated risk, the sample size, mean, standard deviation, and an indicator of if the criterion was satisfied.

Author(s)

Bhargab Chattopadhyay Bhargab@iiitvadodara.ac.in, Neetu Shah 201451015@iiitvadodara.ac.in, Ken Kelley kkelley@nd.edu

References

Mukhopadhyay, N., \& de Silva, Basil M. (2009). Sequential Methods and Their Applications. New York: CRC Press.

Examples

pilot_ss <- seq_mr_dfr_mean_arb(A=100, c=2, pilot=TRUE)
SLS <- rnorm(pilot_ss, mean=0, sd=1)
seq_mr_dfr_mean_arb(data=SLS, A=100, c=2, gamma=0.5, pilot=FALSE)

yelleKneK/SMSD documentation built on Nov. 23, 2022, 6:40 p.m.