amplify.handling.effect | Handling effect amplification |
blocking.design | Blocking Design |
calc.confounding.level | Level of confounding calculation |
clanc.intcv | Classification to Nearest Centroids Classifier |
clanc.predict | Prediction with Classification to Nearest Centroids... |
confounding.design | Confounding Design |
create.storage | Create Storage for Output |
dlda.intcv | Diagonal Linear Discriminant Classifier |
dlda.predict | Prediction with Diagonal Linear Discriminant classifier |
estimate.biological.effect | Estimated Sample Effects |
estimate.handling.effect | Estimated handling effects |
extract.precision.error | Extracting errors from PRECISION (both non-FLEX and FLEX)... |
knn.intcv | K-Nearest Neighbors Classifier |
knn.predict | Prediction with K-Nearest Neighbors classifier |
lasso.intcv | Least absolute shrinkage and selection operator through... |
lasso.predict | Prediction with least absolute shrinkage and selection... |
limma.pbset | Differential expression analysis of probe-set data |
med.norm | Median normalization |
med.sum.pbset | Probe-set median summarization |
nuhdata.pl | The nonuniformly-handled probe-level dataset, 10 probes for... |
pam.intcv | Nearest shrunken centroid through internal cross validation |
pam.predict | Prediction with nearest shrunken centroid classifier |
per.unipbset.truncate | Probe-level data truncation to a fixed number of probes per... |
plot.precision | Plot misclassification error rates from PRECISION (both... |
plot.precision.multiclass | plot.precision.multiclass |
precision.simulate | Classification analysis of simulation study |
precision.simulate.class | precision simulation with classification |
precision.simulate.multiclass | precision simulation with multi-classification |
quant.norm | Quantile normalization |
ranfor.intcv | Random Forest Classifier |
ranfor.predict | Prediction with random forest classifier |
reduce.signal | Biological signal reduction |
rehybridize | Virtual rehybridization with an array-to-sample assignment |
stratification.design | Stratification Design |
svm.intcv | Support Vector Machine Classifier |
svm.predict | Prediction with support vector machine classifier |
switch.classifier.funcs | Switch classfication functions |
switch.classifier.funcs.class | Switch classfication functions |
switch.norm.funcs | Switch Normalization Functions |
switch.norm.funcs.flex | Switch normalization funcsions in a flexible way |
tabulate.ext.err.func | Tabulate.ext.err.func |
uhdata.pl | The uniformly-handled probe-level dataset, 10 probes for each... |
uni.handled.simulate | Classification analysis of uniformly-handled data |
vs.norm | Variance stabilizing normalization |
xgboost.intcv | XGBoost Classifier |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.