xgboost.intcv: XGBoost Classifier

xgboost.intcvR Documentation

XGBoost Classifier

Description

Build a random forest classifier using internal cross validation to choose the turning parameter, with a 5-fold cross validation as default.

Usage

xgboost.intcv(kfold = 5, X, y, seed)

Arguments

kfold

number of folds. By default, kfold = 5.

X

dataset to be trained. This dataset must have rows as probes and columns as samples.

y

a vector of sample group of each sample for the dataset to be trained. It must have an equal length to the number of samples in X.

seed

an integer used to initialize a pseudorandom number generator.

Value

a list of 4 elements:

mc

an internal misclassification error rate

time

the processing time of performing internal validation with LASSO

model

a LASSO classifier, resulted from cv.fit

References

https://cran.r-project.org/web/packages/e1071/index.html

Examples

set.seed(101)
biological.effect <- estimate.biological.effect(uhdata = uhdata.pl)
ctrl.genes <- unique(rownames(uhdata.pl))[grep("NC", unique(rownames(uhdata.pl)))]
biological.effect.nc <- biological.effect[!rownames(biological.effect)
  %in% ctrl.genes, ]
group.id <- substr(colnames(biological.effect.nc), 7, 7)

biological.effect.train.ind <- colnames(biological.effect.nc)[c(sample(which(
  group.id == "E"), size = 64),
  sample(which(group.id == "V"), size = 64))]
biological.effect.nc.tr <- biological.effect.nc[, biological.effect.train.ind]

ranfor.int <- ranfor.intcv(X = biological.effect.nc.tr,
                         y = substr(colnames(biological.effect.nc.tr), 7, 7),
                         kfold = 5, seed = 1)


yilinwu123/precision1 documentation built on June 28, 2022, 2:53 a.m.