dlda.intcv: Diagonal Linear Discriminant Classifier

dlda.intcvR Documentation

Diagonal Linear Discriminant Classifier

Description

Build a Diagonal Linear Discriminant classifier.

Usage

dlda.intcv(kfold = NULL, X, y, seed)

Arguments

kfold

placeholder with no meaning, default as NULL.

X

dataset to be trained. This dataset must have rows as probes and columns as samples.

y

a vector of sample group of each sample for the dataset to be trained. It must have an equal length to the number of samples in X.

seed

an integer used to initialize a pseudorandom number generator.

Value

a list of 4 elements:

mc

an internal misclassification error rate

time

the processing time

model

a DLDA classifier

References

https://cran.r-project.org/web/packages/HiDimDA/index.html

Examples

set.seed(101)
biological.effect <- estimate.biological.effect(uhdata = uhdata.pl)
ctrl.genes <- unique(rownames(uhdata.pl))[grep("NC", unique(rownames(uhdata.pl)))]
biological.effect.nc <- biological.effect[!rownames(biological.effect)
  %in% ctrl.genes, ]
group.id <- substr(colnames(biological.effect.nc), 7, 7)

biological.effect.train.ind <- colnames(biological.effect.nc)[c(sample(which(
  group.id == "E"), size = 64),
  sample(which(group.id == "V"), size = 64))]
biological.effect.nc.tr <- biological.effect.nc[, biological.effect.train.ind]

dlda.int <- dlda.intcv(X = biological.effect.nc.tr,
                     y = substr(colnames(biological.effect.nc.tr), 7, 7),
                     kfold = NULL, seed = 1)


yilinwu123/precision1 documentation built on June 28, 2022, 2:53 a.m.