View source: R/post-hoc-test.R
run_posthoc_test | R Documentation |
Multiple group test, such as anova and Kruskal-Wallis rank sum test, can be used to uncover the significant feature among all groups. Post hoc tests are used to uncover specific mean differences between pair of groups.
run_posthoc_test(
ps,
group,
transform = c("identity", "log10", "log10p"),
norm = "TSS",
norm_para = list(),
conf_level = 0.95,
method = c("tukey", "games_howell", "scheffe", "welch_uncorrected")
)
ps |
a |
group |
character, the variable to set the group |
transform |
character, the methods used to transform the microbial
abundance. See
|
norm |
the methods used to normalize the microbial abundance data. See
|
norm_para |
arguments passed to specific normalization methods |
conf_level |
confidence level, default 0.95 |
method |
one of "tukey", "games_howell", "scheffe", "welch_uncorrected", defining the method for the pairwise comparisons. See details for more information. |
a postHocTest object
postHocTest, run_test_multiple_groups()
data(enterotypes_arumugam)
ps <- phyloseq::subset_samples(
enterotypes_arumugam,
Enterotype %in% c("Enterotype 3", "Enterotype 2", "Enterotype 1")
) %>%
phyloseq::subset_taxa(Phylum == "Bacteroidetes")
pht <- run_posthoc_test(ps, group = "Enterotype")
pht
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.