#' Find rows of data that are selected by a brush
#'
#' This function returns rows from a data frame which are under a brush used
#' with \code{\link{plotOutput}}.
#'
#' It is also possible for this function to return all rows from the input data
#' frame, but with an additional column \code{selected_}, which indicates which
#' rows of the input data frame are selected by the brush (\code{TRUE} for
#' selected, \code{FALSE} for not-selected). This is enabled by setting
#' \code{allRows=TRUE} option.
#'
#' The \code{xvar}, \code{yvar}, \code{panelvar1}, and \code{panelvar2}
#' arguments specify which columns in the data correspond to the x variable, y
#' variable, and panel variables of the plot. For example, if your plot is
#' \code{plot(x=cars$speed, y=cars$dist)}, and your brush is named
#' \code{"cars_brush"}, then you would use \code{brushedPoints(cars,
#' input$cars_brush, "speed", "dist")}.
#'
#' For plots created with ggplot2, it should not be necessary to specify the
#' column names; that information will already be contained in the brush,
#' provided that variables are in the original data, and not computed. For
#' example, with \code{ggplot(cars, aes(x=speed, y=dist)) + geom_point()}, you
#' could use \code{brushedPoints(cars, input$cars_brush)}. If, however, you use
#' a computed column, like \code{ggplot(cars, aes(x=speed/2, y=dist)) +
#' geom_point()}, then it will not be able to automatically extract column names
#' and filter on them. If you want to use this function to filter data, it is
#' recommended that you not use computed columns; instead, modify the data
#' first, and then make the plot with "raw" columns in the modified data.
#'
#' If a specified x or y column is a factor, then it will be coerced to an
#' integer vector. If it is a character vector, then it will be coerced to a
#' factor and then integer vector. This means that the brush will be considered
#' to cover a given character/factor value when it covers the center value.
#'
#' If the brush is operating in just the x or y directions (e.g., with
#' \code{brushOpts(direction = "x")}, then this function will filter out points
#' using just the x or y variable, whichever is appropriate.
#'
#' @param brush The data from a brush, such as \code{input$plot_brush}.
#' @param df A data frame from which to select rows.
#' @param xvar,yvar A string with the name of the variable on the x or y axis.
#' This must also be the name of a column in \code{df}. If absent, then this
#' function will try to infer the variable from the brush (only works for
#' ggplot2).
#' @param panelvar1,panelvar2 Each of these is a string with the name of a panel
#' variable. For example, if with ggplot2, you facet on a variable called
#' \code{cyl}, then you can use \code{"cyl"} here. However, specifying the
#' panel variable should not be necessary with ggplot2; Shiny should be able
#' to auto-detect the panel variable.
#' @param allRows If \code{FALSE} (the default) return a data frame containing
#' the selected rows. If \code{TRUE}, the input data frame will have a new
#' column, \code{selected_}, which indicates whether the row was inside the
#' brush (\code{TRUE}) or outside the brush (\code{FALSE}).
#'
#' @seealso \code{\link{plotOutput}} for example usage.
#' @export
brushedPoints <- function(df, brush, xvar = NULL, yvar = NULL,
panelvar1 = NULL, panelvar2 = NULL,
allRows = FALSE) {
if (is.null(brush)) {
if (allRows)
df$selected_ <- FALSE
else
df <- df[0, , drop = FALSE]
return(df)
}
if (is.null(brush$xmin)) {
stop("brushedPoints requires a brush object with xmin, xmax, ymin, and ymax.")
}
# Which direction(s) the brush is selecting over. Direction can be 'x', 'y',
# or 'xy'.
use_x <- grepl("x", brush$direction)
use_y <- grepl("y", brush$direction)
# Try to extract vars from brush object
xvar <- xvar %OR% brush$mapping$x
yvar <- yvar %OR% brush$mapping$y
panelvar1 <- panelvar1 %OR% brush$mapping$panelvar1
panelvar2 <- panelvar2 %OR% brush$mapping$panelvar2
# Filter out x and y values
keep_rows <- rep(TRUE, nrow(df))
if (use_x) {
if (is.null(xvar))
stop("brushedPoints: not able to automatically infer `xvar` from brush")
# Extract data values from the data frame
x <- asNumber(df[[xvar]])
keep_rows <- keep_rows & (x >= brush$xmin & x <= brush$xmax)
}
if (use_y) {
if (is.null(yvar))
stop("brushedPoints: not able to automatically infer `yvar` from brush")
y <- asNumber(df[[yvar]])
keep_rows <- keep_rows & (y >= brush$ymin & y <= brush$ymax)
}
# Find which rows are matches for the panel vars (if present)
if (!is.null(panelvar1))
keep_rows <- keep_rows & panelMatch(brush$panelvar1, df[[panelvar1]])
if (!is.null(panelvar2))
keep_rows <- keep_rows & panelMatch(brush$panelvar2, df[[panelvar2]])
if (allRows) {
df$selected_ <- keep_rows
df
} else {
df[keep_rows, , drop = FALSE]
}
}
# The `brush` data structure will look something like the examples below.
# For base graphics, `mapping` is empty, and there are no panelvars:
# List of 8
# $ xmin : num 3.73
# $ xmax : num 4.22
# $ ymin : num 13.9
# $ ymax : num 19.8
# $ mapping: Named list()
# $ domain :List of 4
# ..$ left : num 1.36
# ..$ right : num 5.58
# ..$ bottom: num 9.46
# ..$ top : num 34.8
# $ range :List of 4
# ..$ left : num 58
# ..$ right : num 429
# ..$ bottom: num 226
# ..$ top : num 58
# $ log :List of 2
# ..$ x: NULL
# ..$ y: NULL
# $ direction: chr "y"
#
# For ggplot2, the mapping vars usually will be included, and if faceting is
# used, they will be listed as panelvars:
# List of 10
# $ xmin : num 3.18
# $ xmax : num 3.78
# $ ymin : num 17.1
# $ ymax : num 20.4
# $ panelvar1: int 6
# $ panelvar2: int 0
# $ mapping :List of 4
# ..$ x : chr "wt"
# ..$ y : chr "mpg"
# ..$ panelvar1: chr "cyl"
# ..$ panelvar2: chr "am"
# $ domain :List of 4
# ..$ left : num 1.32
# ..$ right : num 5.62
# ..$ bottom: num 9.22
# ..$ top : num 35.1
# $ range :List of 4
# ..$ left : num 172
# ..$ right : num 300
# ..$ bottom: num 144
# ..$ top : num 28.5
# $ log :List of 2
# ..$ x: NULL
# ..$ y: NULL
# $ direction: chr "y"
#'Find rows of data that are near a click/hover/double-click
#'
#'This function returns rows from a data frame which are near a click, hover, or
#'double-click, when used with \code{\link{plotOutput}}. The rows will be sorted
#'by their distance to the mouse event.
#'
#'It is also possible for this function to return all rows from the input data
#'frame, but with an additional column \code{selected_}, which indicates which
#'rows of the input data frame are selected by the brush (\code{TRUE} for
#'selected, \code{FALSE} for not-selected). This is enabled by setting
#'\code{allRows=TRUE} option. If this is used, the resulting data frame will not
#'be sorted by distance to the mouse event.
#'
#'The \code{xvar}, \code{yvar}, \code{panelvar1}, and \code{panelvar2} arguments
#'specify which columns in the data correspond to the x variable, y variable,
#'and panel variables of the plot. For example, if your plot is
#'\code{plot(x=cars$speed, y=cars$dist)}, and your click variable is named
#'\code{"cars_click"}, then you would use \code{nearPoints(cars,
#'input$cars_brush, "speed", "dist")}.
#'
#'@inheritParams brushedPoints
#'@param coordinfo The data from a mouse event, such as \code{input$plot_click}.
#'@param threshold A maxmimum distance to the click point; rows in the data
#' frame where the distance to the click is less than \code{threshold} will be
#' returned.
#'@param maxpoints Maximum number of rows to return. If NULL (the default),
#' return all rows that are within the threshold distance.
#'@param addDist If TRUE, add a column named \code{dist_} that contains the
#' distance from the coordinate to the point, in pixels. When no mouse event
#' has yet occured, the value of \code{dist_} will be \code{NA}.
#'@param allRows If \code{FALSE} (the default) return a data frame containing
#' the selected rows. If \code{TRUE}, the input data frame will have a new
#' column, \code{selected_}, which indicates whether the row was inside the
#' selected by the mouse event (\code{TRUE}) or not (\code{FALSE}).
#'
#'@seealso \code{\link{plotOutput}} for more examples.
#'
#' @examples
#' \dontrun{
#' # Note that in practice, these examples would need to go in reactives
#' # or observers.
#'
#' # This would select all points within 5 pixels of the click
#' nearPoints(mtcars, input$plot_click)
#'
#' # Select just the nearest point within 10 pixels of the click
#' nearPoints(mtcars, input$plot_click, threshold = 10, maxpoints = 1)
#'
#' }
#'@export
nearPoints <- function(df, coordinfo, xvar = NULL, yvar = NULL,
panelvar1 = NULL, panelvar2 = NULL,
threshold = 5, maxpoints = NULL, addDist = FALSE,
allRows = FALSE) {
if (is.null(coordinfo)) {
if (addDist)
df$dist_ <- NA_real_
if (allRows)
df$selected_ <- FALSE
else
df <- df[0, , drop = FALSE]
return(df)
}
if (is.null(coordinfo$x)) {
stop("nearPoints requires a click/hover/double-click object with x and y values.")
}
# Try to extract vars from coordinfo object
xvar <- xvar %OR% coordinfo$mapping$x
yvar <- yvar %OR% coordinfo$mapping$y
panelvar1 <- panelvar1 %OR% coordinfo$mapping$panelvar1
panelvar2 <- panelvar2 %OR% coordinfo$mapping$panelvar2
if (is.null(xvar))
stop("nearPoints: not able to automatically infer `xvar` from coordinfo")
if (is.null(yvar))
stop("nearPoints: not able to automatically infer `yvar` from coordinfo")
# Extract data values from the data frame
x <- asNumber(df[[xvar]])
y <- asNumber(df[[yvar]])
# Get the pixel coordinates of the point
coordPx <- scaleCoords(coordinfo$x, coordinfo$y, coordinfo)
# Get pixel coordinates of data points
dataPx <- scaleCoords(x, y, coordinfo)
# Distances of data points to coordPx
dists <- sqrt((dataPx$x - coordPx$x) ^ 2 + (dataPx$y - coordPx$y) ^ 2)
if (addDist)
df$dist_ <- dists
keep_rows <- (dists <= threshold)
# Find which rows are matches for the panel vars (if present)
if (!is.null(panelvar1))
keep_rows <- keep_rows & panelMatch(coordinfo$panelvar1, df[[panelvar1]])
if (!is.null(panelvar2))
keep_rows <- keep_rows & panelMatch(coordinfo$panelvar2, df[[panelvar2]])
# Track the indices to keep
keep_idx <- which(keep_rows)
# Order by distance
dists <- dists[keep_idx]
keep_idx <- keep_idx[order(dists)]
# Keep max number of rows
if (!is.null(maxpoints) && length(keep_idx) > maxpoints) {
keep_idx <- keep_idx[seq_len(maxpoints)]
}
if (allRows) {
# Add selected_ column if needed
df$selected_ <- FALSE
df$selected_[keep_idx] <- TRUE
} else {
# If we don't keep all rows, return just the selected rows, sorted by
# distance.
df <- df[keep_idx, , drop = FALSE]
}
df
}
# The coordinfo data structure will look something like the examples below.
# For base graphics, `mapping` is empty, and there are no panelvars:
# List of 7
# $ x : num 4.37
# $ y : num 12
# $ mapping: Named list()
# $ domain :List of 4
# ..$ left : num 1.36
# ..$ right : num 5.58
# ..$ bottom: num 9.46
# ..$ top : num 34.8
# $ range :List of 4
# ..$ left : num 58
# ..$ right : num 429
# ..$ bottom: num 226
# ..$ top : num 58
# $ log :List of 2
# ..$ x: NULL
# ..$ y: NULL
# $ .nonce : num 0.343
#
# For ggplot2, the mapping vars usually will be included, and if faceting is
# used, they will be listed as panelvars:
# List of 9
# $ x : num 3.78
# $ y : num 17.1
# $ panelvar1: int 6
# $ panelvar2: int 0
# $ mapping :List of 4
# ..$ x : chr "wt"
# ..$ y : chr "mpg"
# ..$ panelvar1: chr "cyl"
# ..$ panelvar2: chr "am"
# $ domain :List of 4
# ..$ left : num 1.32
# ..$ right : num 5.62
# ..$ bottom: num 9.22
# ..$ top : num 35.1
# $ range :List of 4
# ..$ left : num 172
# ..$ right : num 300
# ..$ bottom: num 144
# ..$ top : num 28.5
# $ log :List of 2
# ..$ x: NULL
# ..$ y: NULL
# $ .nonce : num 0.603
# Coerce various types of variables to numbers. This works for Date, POSIXt,
# characters, and factors. Used because the mouse coords are numeric.
asNumber <- function(x) {
if (is.character(x)) x <- as.factor(x)
if (is.factor(x)) x <- as.integer(x)
as.numeric(x)
}
# Given a panelvar value and a vector x, return logical vector indicating which
# items match the panelvar value. Because the panelvar value is always a
# string but the vector could be numeric, it might be necessary to coerce the
# panelvar to a number before comparing to the vector.
panelMatch <- function(search_value, x) {
if (is.numeric(x)) search_value <- as.numeric(search_value)
x == search_value
}
# ----------------------------------------------------------------------------
# Scaling functions
# These functions have direct analogs in Javascript code, except these are
# vectorized for x and y.
# Map a value x from a domain to a range. If clip is true, clip it to the
# range.
mapLinear <- function(x, domainMin, domainMax, rangeMin, rangeMax, clip = TRUE) {
factor <- (rangeMax - rangeMin) / (domainMax - domainMin)
val <- x - domainMin
newval <- (val * factor) + rangeMin
if (clip) {
maxval <- max(rangeMax, rangeMin)
minval <- min(rangeMax, rangeMin)
newval[newval > maxval] <- maxval
newval[newval < minval] <- minval
}
newval
}
# Scale val from domain to range. If logbase is present, use log scaling.
scale1D <- function(val, domainMin, domainMax, rangeMin, rangeMax,
logbase = NULL, clip = TRUE) {
if (!is.null(logbase))
val <- log(val, logbase)
mapLinear(val, domainMin, domainMax, rangeMin, rangeMax, clip)
}
# Inverse scale val, from range to domain. If logbase is present, use inverse
# log (power) transformation.
scaleInv1D <- function(val, domainMin, domainMax, rangeMin, rangeMax,
logbase = NULL, clip = TRUE) {
res <- mapLinear(val, rangeMin, rangeMax, domainMin, domainMax, clip)
if (!is.null(logbase))
res <- logbase ^ res
res
}
# Scale x and y coordinates from domain to range, using information in
# scaleinfo. scaleinfo must contain items $domain, $range, and $log. The
# scaleinfo object corresponds to one element from the coordmap object generated
# by getPrevPlotCoordmap or getGgplotCoordmap; it is the scaling information for
# one panel in a plot.
scaleCoords <- function(x, y, scaleinfo) {
if (is.null(scaleinfo))
return(NULL)
domain <- scaleinfo$domain
range <- scaleinfo$range
log <- scaleinfo$log
list(
x = scale1D(x, domain$left, domain$right, range$left, range$right, log$x),
y = scale1D(y, domain$bottom, domain$top, range$bottom, range$top, log$y)
)
}
# Inverse scale x and y coordinates from range to domain, using information in
# scaleinfo.
scaleInvCoords <- function(x, y, scaleinfo) {
if (is.null(scaleinfo))
return(NULL)
domain <- scaleinfo$domain
range <- scaleinfo$range
log <- scaleinfo$log
list(
x = scaleInv1D(x, domain$left, domain$right, range$left, range$right, log$x),
y = scaleInv1D(y, domain$bottom, domain$top, range$bottom, range$top, log$y)
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.