MakeSeuObj_FromRawRNAData: MakeSeuObj_FromRawRNAData

View source: R/MakeSeuObj_FromRawRNAData.R

MakeSeuObj_FromRawRNADataR Documentation

MakeSeuObj_FromRawRNAData

Description

Make Seurat object from the raw count data which were downloaded from GEO database. To use this function, a list containing the raw data should be provided. This function is re-written from Seurat package.

Usage

MakeSeuObj_FromRawRNAData(
  RawList = RawList,
  MtPattern = "^MT-",
  GSE.ID = "Test",
  MinFeature = 200,
  MaxFeature = 7500,
  MinCount = 400,
  MaxCount = 40000,
  MaxMT = 10,
  Norm.method = "lognorm",
  Scale.factor = 10000,
  Feature.selection.method = "vst",
  Nfeatures = 2000,
  Npcs = 50,
  Dims = 1:30,
  Resolution = 0.8,
  Algorithm = 1,
  Do.scale = TRUE,
  Do.center = TRUE
)

Arguments

RawList

A list containing the raw data. Each element of the list is for one raw dataset. The name of the element will be used as the ID of the raw dataset. Required.

MtPattern

The pattern to recognize mitochondria gene. Different species can have different labels. For example, for human data, MtPattern='^MT-' is appropriate, while for mouse it should be MtPattern='^mt-'. Optional. Default: MtPattern='^MT-'

GSE.ID

The GSE ID for this project. Default: Test

MinFeature

Minimal feature count to keep the cell. Default: 200

MaxFeature

Maximal feature count to keep the cell. Default: 7500

MinCount

Minimal RNA count to keep the cell. Default: 400

MaxCount

Maximal RNA count to keep the cell. Default: 40000

MaxMT

Percentage of mitochondria gene to filter out the cell. Default: 10

Norm.method

The method to normalize data. Two normalization methods are allowed and supported: lognorm (For LogNormalization) and sct(For sctransform). Default: lognorm

Scale.factor

The factor to scale up the data. Default: 10000

Feature.selection.method

The method for the top variable feature selection. This will feed to FindVariableFeatures function. Default: vst

Nfeatures

The number of top variable features for the FindVariableFeatures function. Default: 2000

Npcs

The number of pc to use for the functions of RunPCA. Default: 50

Dims

The number of top dimensions of reduction to use for the functions of FindNeighbors and RunUMAP. Default: 1:30

Resolution

The resolution value for FindClusters function. Default: 0.8

Algorithm

The algorithm to be used in FindClusters. Default: 1

Do.scale

Whether to scale the data or not. Binary data. This will feed to ScaleData function. Default: TRUE

Do.center

Whether to center the data or not. Binary data. This will feed to ScaleData function. Default: TRUE

Value

A list with each element corresponding to a Seurat object of a raw data.

Examples


library(singleGEO)

#

data(testData_GSE134174)

test_dat<-testData_GSE134174$TwoRawData
test_meta<-testData_GSE134174$TwoMetaData
list_GSE134174<-Splitdata_MakeDataList(InputData=test_dat,Group=test_meta$Donor)

##The following code setting big number of MaxFeature,MaxCount,MaxMT and small number
##of MinFeature,MinCount will keep all the cells

seu_GSE134174<-MakeSeuObj_FromRawRNAData(RawList=list_GSE134174,GSE.ID="GSE134174",MinFeature=1,MaxFeature=750000,
                                       MinCount=1, MaxCount=4000000,MaxMT=100)

yuanqingyan/singleGEO documentation built on Jan. 11, 2025, 6:35 p.m.