library(crisprvarified)
library(dplyr)
library(ggplot2)
#### LFC after z-score####
#input file
input_path = "/Users/yujijun/Documents/01-Work/05-CRESPR_SCREEN/crisprproject1/data/"
meta = read.table(paste(input_path,"QC_meta.txt",sep = "/"),sep ="\t",header = T)
LFC = read.table(paste(input_path,"LFC_maxscale.txt",sep = "/"))
genename = "CARM1"
output_path <- "/Users/yujijun/Documents/01-Work/05-CRESPR_SCREEN/crisprproject1/CRISPR_output_plot/Barplot"
#create barplot generation function for single gene
singlegenebarplot <- function(inputdata, x,y,fill,sort.by.groups,ylab,xlab,legend.title,title){
require("ggpubr")
p <- ggbarplot(inputdata, x = x, y = y,
fill=fill,
#fill = c(rep("#B2182B",2),rep("#2166AC",5)), # change fill color by mpg_level
color = "black", # Set bar border colors to white
palette = "jco", # jco journal color palett. see ?ggpar
sort.val = "desc", # Sort the value in descending order
sort.by.groups = sort.by.groups, # Don't sort inside each group
x.text.angle = 0,
#y.text.angle =90,
xlab = xlab, # Rotate vertically x axis texts
ylab = ylab,
legend.title = legend.title,
rotate = TRUE,
ggtheme = theme_bw(),
width = 0.8
) + scale_y_continuous(limits=c(-2.05, 0.1),breaks = seq(-2,0.5)) +
scale_x_discrete(breaks=CARM1_no4$file_treatment,labels=c("mNaiveTh GATA3 (Henriksson et al.) ","B16F10 OT-I (Kearney et al.)",
"MC38 OT-I aPD1 (Kearney et al.)","B16F10 Pmel-I IFNg (Pan et al.)",
"hCD8T CFSE (Shifrut et al.)","IFNGR1mut.SKCM MART-I (Vredevoogd et al.)"))+
theme(legend.title = element_text(face = "bold")) +
theme(axis.title.x=element_blank()) +
theme(axis.title.y=element_blank()) +
theme(title = element_blank()) +
#theme(title = element_text(face = "bold",size = 13,hjust = 0.5)) +
#theme(axis.text = element_text(face = "bold")) +
theme(legend.position = "none") +
#scale_fill_manual("legend", values = c("#2166AC" = "#2166AC", "#B2182B" = "#B2182B"))
theme(axis.text.y = element_text(face = "bold",size=10))+
theme(plot.margin = margin(5,0.5,5,0.5,"cm")) +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank()) +
theme(aspect.ratio = 1/2) +
theme(axis.text.x = element_text(angle = 90))
#, axis.line = element_line(colour = "black")
#p <- p + coord_cartesian(xlim = c(-4, 4))
plot(p)
}
Barplot_singlegene <- function(LFC,meta,genename,output_path,figure_title){
# LFC is a dataframe include all samples' LFC in different genes;
# meta is a dataframe include all meta information for all samples;
# genename is a character of gene name which you woule like to perform.
CARM1 <- LFC[which(rownames(LFC) == genename),] #you can change any of the gene here
CARM1_matrix <- meta
CARM1_matrix$carm1 = as.numeric(CARM1[1,])
CARM1_matrix$file_treatment <- paste(meta$file_name_all,
"_(",meta$Treatment_type,")",sep = "")
CARM1_matrix_NONA = CARM1_matrix %>% filter(!is.na(carm1)) #filter out the NA value
CARM1_matrix_NONA_choose <- CARM1_matrix_NONA %>% filter(Treatment_type == "Tcell_coculture" | Treatment_type == "Tcell")
#draw figure and output
p <- singlegenebarplot(CARM1_matrix_NONA_choose,x = "file_treatment",y="carm1",fill= "color",
sort.by.groups = T,ylab = "LFC Value",xlab="Cohort Name",legend.title = "KO_type",title = paste("Barplot for", genename, "gene",sep = " "))
figure_name = paste(figure_title,".png",sep = "")
png(paste(output_path,figure_name,sep = "/"),height = 12,width = 17,units ="cm",res=150)
print(p)
dev.off()
}
#barplot for immuno kill/ tumor kill coculture/tumor kill sorting
#The first little figure
fill = c(rep("#B2182B",3),rep("#2166AC",3))
CARM1_immuno <- CARM1_matrix_NONA %>% filter(normal_type == "Immune cell KO")
CARM1_immuno_Tcell <- CARM1_immuno %>% filter(Treatment_type == "Tcell")
p <- singlegenebarplot(CARM1_immuno_Tcell,x = "file_treatment",y="carm1",fill=c(rep("#2166AC",2)),
sort.by.groups = T,ylab = "LFC Value",xlab="Cohort Name",legend.title = "KO_type",title = paste("Barplot for", genename, "gene","in immunecell KO",sep = " "))
show(p)
#the second little figure
CARM1_tumor_coculture <- CARM1_matrix_NONA[grep("coculture", CARM1_matrix_NONA$Treatment_type),]
CARM1_Tcellcoculture <- CARM1_tumor_coculture %>% filter(Treatment_type == "Tcell_coculture")
p <- singlegenebarplot(CARM1_Tcellcoculture,x = "file_treatment",y="carm1",fill = c(rep("#B2182B",2),rep("#2166AC",3)),
sort.by.groups = T,ylab = "LFC Value",xlab="Cohort Name",legend.title = "KO_type",title = paste("Barplot for", genename, "gene","in TumorKO(co-culture)",sep = " "))
show(p)
#The all figure
CARM1_no4 <- CARM1_matrix_NONA_choose[-4,]
p <- singlegenebarplot(CARM1_no4,x = "file_treatment",y="carm1",fill = c(rep("#B2182B",1),rep("#2166AC",5)),
sort.by.groups = T,ylab = "LFC Value",xlab="Cohort Name",legend.title = "KO_type",title = paste("Barplot for", genename, "gene","in TumorKO(co-culture)",sep = " "))
show(p)
#CARM1_sorting <- CARM1_matrix_NONA[-grep("coculture", CARM1_matrix_NONA$Treatment_type),]
CARM1_sorting <- CARM1_matrix_NONA %>% filter(normal_type == "TumorKO_sorting")
p <- singlegenebarplot(CARM1_sorting,x = "file_treatment",y="carm1",fill = c(rep("#B2182B",1),rep("#2166AC",3)),
sort.by.groups = T,ylab = "LFC Value",xlab="Cohort Name",legend.title = "KO_type",title = paste("Barplot for", genename, "gene","in TumorKO(sorting)",sep = " "))
Barplot_singlegene(LFC,meta,genename,output_path,figure_title="Barplot for CARM1 in all cohort(maxscale)")
ggplot(CARM1_matrix_NONA_choose, aes(x = "file_treatment",y="carm1",fill= "color")) +
geom_bar(stat = "identity")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.