Description Usage Arguments Value Examples
Presence/Absence peptide-level analysis uses all peptides for a protein as IID to produce 1 p-value across multiple (2+) datasets. Significance is estimated using a g-test which is suitable for two treatment groups only.
1 | peptideLevel_PresAbsDE(mm, treatment, prot.info, pr_ppos = 2)
|
mm |
m x n matrix of intensities, number of peptides x number of samples |
treatment |
vector indicating the treatment group of each sample ie [1 1 1 1 2 2 2 2...] |
prot.info |
2+ colum data frame of peptide ID, protein ID, etc. columns |
pr_ppos |
- column index for protein ID in prot.info. Can restrict to be #2... |
A list of length two items:
protein identification information taken from prot.info, a column used to identify proteins
Approximation of the fold change computed as percent missing observations group 1 munis in percent missing observations group 2
p-value for the comparison between 2 groups (2 groups only here)
Benjamini-Hochberg adjusted p-values
statistic returned by the g-test, not very useful as depends on the direction of the test and can produce all 0's
number of peptides within a protein
all columns of metadata from teh matrix that was passed in
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | # Load mouse dataset
data(mm_peptides)
head(mm_peptides)
intsCols = 8:13 # different from parameter names as R uses
# outer name spaces if variable is undefined
metaCols = 1:7 # reusing this variable
m_logInts = make_intencities(mm_peptides, intsCols) # will reuse the name
m_prot.info = make_meta(mm_peptides, metaCols)
m_logInts = convert_log2(m_logInts)
grps = as.factor(c('CG','CG','CG', 'mCG','mCG','mCG'))
mm_m_ints_eig1 = eig_norm1(m=m_logInts,treatment=grps,prot.info=m_prot.info)
mm_m_ints_eig1$h.c # check the number of bias trends detected
mm_m_ints_norm = eig_norm2(rv=mm_m_ints_eig1)
# Load human dataset
data(hs_peptides)
head(hs_peptides)
intsCols = 8:13 # different from parameter names as R
# uses outer name spaces if variable is undefined
metaCols = 1:7 # reusing this variable
m_logInts = make_intencities(hs_peptides, intsCols) # will reuse the name
m_prot.info = make_meta(hs_peptides, metaCols)
m_logInts = convert_log2(m_logInts)
grps = as.factor(c('CG','CG','CG', 'mCG','mCG','mCG'))
hs_m_ints_eig1 = eig_norm1(m=m_logInts,treatment=grps,prot.info=m_prot.info)
hs_m_ints_eig1$h.c # check the number of bias trends detected
hs_m_ints_norm = eig_norm2(rv=hs_m_ints_eig1)
# Set up for presence/absence analysis
raw_list = list()
norm_imp_prot.info_list = list()
raw_list[[1]] = mm_m_ints_eig1$m
raw_list[[2]] = hs_m_ints_eig1$m
norm_imp_prot.info_list[[1]] = mm_m_ints_eig1$prot.info
norm_imp_prot.info_list[[2]] = hs_m_ints_eig1$prot.info
protnames_norm_list = list()
protnames_norm_list[[1]] = unique(mm_m_ints_norm$normalized$MatchedID)
protnames_norm_list[[2]] = unique(hs_m_ints_norm$normalized$MatchedID)
presAbs_dd = get_presAbs_prots(mm_list=raw_list,
prot.info=norm_imp_prot.info_list,
protnames_norm=protnames_norm_list,
prot_col_name=2)
presAbs_de = peptideLevel_PresAbsDE(presAbs_dd[[1]][[1]],
grps, presAbs_dd[[2]][[1]],
pr_ppos=2)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.