Description Usage Arguments Value Author(s) Examples
View source: R/unifiedClusterLabelling.R
This function unifiedClusterLabelling is used to match the clusters/cell types across multiple scRNA-seq batches. It takes as input raw expression matrices from two or more batches, a list of marker genes and their corresponding cluster labels. It outputs cluster corresponding labels for the cells in each batch.
1 | unifiedClusterLabelling(..., features.use, cluster.labels, datatype="count", ident_list=NULL, cluster.use=NULL, cluster.names=NULL, min.exp.thresh=0, min.perc=0.6, min.average.expr=0)
|
... |
Two or more expression matrices where each row corresponds to a gene and each column corresponds to a single cell. All matriecs should contain the same number of rows (i.e., all batches should have the exact same gene set and in the same order). |
features.use |
is a vector of marker genes used to match clusters across batches. |
cluster.labels |
specifies the corresponding cluster label for each marker gene. |
datatype |
defines the type of data, which can be "count", "CPM", "RPKM" and "FPKM". Default is "count". |
ident_list |
is a list specifying cluster identities of the cells from each batch. |
cluster.use |
defines the clusters used for matching. |
cluster.names |
specifies the labels of clusters. |
min.exp.thresh |
sets the minimum expression value for each marker genes in each cell. Default is 0. |
min.perc |
sets the minimum percentage of cells whose expression level of marker gene |
min.average.expr |
sets the minimum average expression value of each marker gene during cluster definition. Default is 0. |
unifiedClusterLabelling returns a list of unified cluster labels for the cells in each batch.
Yuchen Yang <yyuchen@email.unc.edu>, Gang Li <franklee@live.unc.edu>,, Huijun Qian <hjqian@live.unc.edu>, Yun Li <yunli@med.unc.edu>
1 2 3 4 5 6 7 8 9 10 11 | # Load the example data data_SMNN
data("data_SMNN")
# Provide the marker genes for cluster matching
markers <- c("Col1a1", "Pdgfra", "Ptprc", "Pecam1")
# Specify the cluster labels for each marker gene
cluster.info <- c(1, 1, 2, 3)
# Call function unifiedClusterLabelling to identify the corresponding clusters between two batches
matched_clusters <- unifiedClusterLabelling(data_SMNN$batch1.mat, data_SMNN$batch2.mat, features.use = markers, cluster.labels = cluster.info, min.perc = 0.3)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.