R/np_based.R

Defines functions get_survival_fun np_based

Documented in np_based

#' Confidence interval based on nonparametric regression
#'
#' Construct conformal predictive interval based on nonparametric regression
#'
#' @param x a vector of the covariate of the test data.
#' @param c the censoring time cutoff.
#' @param alpha a number betweeo 0 and 1, specifying the miscaverage rate.
#' @param data_fit a data frame, containing the training data.
#' @param data_calib a data frame, containing the calibration data.
#' @param weight_calib The weight corresponding to the calibration data.
#' @param weight_new The weight corresponding to the test data.
#'
#' @return low_ci a value of the lower bound for the survival time of the test point.
#' @return includeR 0 or 1, indicating if [r,inf) is included in the confidence interval.
#'
#' @family model
#'
#' @export

np_based <- function(x,c,alpha,
                      data_fit,
                      data_calib,
                      weight_calib,
                      weight_new,
                      ftol=.1,tol=.2
                      ){
  ## Check the dimensionality of the input
  if(is.null(dim(x)[1])){
    len_x <- length(x)
    p <- 1
  }else{
    len_x <- dim(x)[1]
    p <- dim(x)[2]
  }

  ## Keep only the data points with C>=c
  ## Transform min(T,C) to min(T,c) 
  weight_calib <- weight_calib[data_calib$C>=c]
  data_calib <- data_calib[data_calib$C>=c,]
  data_calib$censored_T <- pmin(data_calib$censored_T,c)
  
  ## Fit the model for S(y)=p(min(T,c)>=y|X)
  xnames <- paste0("X",1:p)
  data_fit <- data_fit[data_fit$C>=c,]
  data_fit$censored_T <- pmin(data_fit$censored_T,c)
   
  surv_data_fit <- data_fit
  surv_data_fit$censored_T <- -surv_data_fit$censored_T
  fmla <- with(surv_data_fit,as.formula(paste("censored_T ~ ", paste(xnames, collapse= "+"))))
  if(p==1){
    capture.output(bw <- npcdistbw(fmla),file='NULL')
  }else{
    capture.output(bw <- npcdistbw(fmla,ftol=ftol,tol=tol),file='NULL')
  }

  surv_data_calib <- data_calib
  surv_data_calib$censored_T <- -surv_data_calib$censored_T
  score<- npcdist(bws=bw,newdata = surv_data_calib)$condist
    
  ## Obtain the calibration term
  calib_term <- sapply(X=weight_new,get_calibration,score=score,
                         weight_calib=weight_calib,alpha=alpha)

  ## Obtain the final confidence interval
  lower_bnd <- rep(0,len_x)
  newdata <- data.frame(x)
  colnames(newdata) <- xnames
  for(i in 1:len_x){
    time_candidate <- seq(0,c+2,by=.1)
    score_candidate <- sapply(-time_candidate,get_survival_fun,x = newdata[i,],bw=bw,xnames=xnames) 
    ind <- min(which(score_candidate<=calib_term[i]))
    if(ind>1){
      lower_bnd[i] <- time_candidate[ind-1]
    }else{
      lower_bnd[i] <- 0
    }
}
 
  lower_bnd <- pmax(lower_bnd,0)
  lower_bnd <- pmin(lower_bnd,c)
  return(lower_bnd)
}


get_survival_fun <- function(x,t,bw,xnames){
  input_data <- data.frame(x)
  colnames(input_data) <- xnames
  input_data <- cbind(input_data,censored_T=t)
  val<- npcdist(bws=bw,newdata=input_data)$condist
  return(val)
}
zhimeir/cfsurvival documentation built on April 13, 2022, 6:41 a.m.