Description Usage Arguments Value Author(s) See Also Examples
permutationMultipleLm is a permutation test to calculate the empirical p values for a weighted multiple linear regression.
1 2 | permutationMultipleLm(fc, net, weights = rep(1, nrow(net)), num = 100,
verbose = TRUE)
|
fc |
a vector of numeric values representing gene expression fold change |
net |
a matrix of numeric values in the size of gene number x gene set number, representing the connectivity between genes and gene sets |
weights |
a vector of numeric values representing the weights of permuated genes |
num |
an integer value representing the number of permutations |
verbose |
an boolean value indicating whether or not to print output to the screen |
a data frame comprising the following columns:
term a vector of character incidating the names of gene sets.
usedGenes a vector of numeric values indicating the number of genes used in the model.
Estimate a vector of numeric values indicating the regression coefficients.
Std..Error a vector of numeric values indicating the standard errors of regression coefficients.
t.value a vector of numeric values indicating the t-statistics of regression coefficients.
observedPval a vector of numeric values [0,1] indicating the p values from the multiple weighted regression model.
empiricalPval a vector of numeric values [0,1] indicating the empirical p values from the permutation test.
Shijia Zhu, shijia.zhu@mssm.edu
orderedIntersect
;
permutationMultipleLmMatrix
;
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | # load data
data(heart.metaXcan)
gene <- heart.metaXcan$gene_name
# extract the imputed Z-score of differential gene expression, which follows
# the normal distribution
fc <- heart.metaXcan$zscore
# use as weights the prediction R^2 and the fraction of imputation-used SNPs
usedFrac <- heart.metaXcan$n_snps_used / heart.metaXcan$n_snps_in_cov
r2 <- heart.metaXcan$pred_perf_r2
weights <- usedFrac*r2
# build a new data frame for the following weighted linear regression-based
# enrichment analysis
data <- data.frame(gene,fc,weights)
head(data)
net <- MSigDB.KEGG.Pathway$net
# intersect the imputed genes with the gene sets of interest
data2 <- orderedIntersect( x = data[,c("fc","weights")] , by.x = data$gene ,
by.y = rownames(net) )
net2 <- orderedIntersect( x = net , by.x = rownames(net) ,
by.y = data$gene )
all( rownames(net2) == rownames(data2) )
# the MGSEA.res1 uses the weighted multiple linear regression to do
# permutation test,
# while MGSEA.res2 used the solution of weighted matrix operation. The
# latter one takes substantially less time.
# system.time( MGSEA.res1<-permutationMultipleLm(fc=data2$fc, net=net2,
# weights=data2$weights, num=1000))
# system.time( MGSEA.res2<-permutationMultipleLmMatrix(fc=data2$fc,
# net=net2, weights=data2$weights, num=1000))
# head(MGSEA.res2)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.