### SVM based on composite operator
cv.ccsvm <- function(x, ...) UseMethod("cv.ccsvm")
cv.ccsvm.default <- function(x, ...) {
if (extends(class(x), "Matrix"))
return(cv.ccsvm.matrix(x = x, ...))
if (class(x)=="data.frame")
return(cv.ccsvm.matrix(x = x, ...))
if (class(x)=="numeric" && is.null(dim(x)))
return(cv.ccsvm.matrix(x = as.matrix(x), ...))
stop("no method for objects of class ", sQuote(class(x)),
" implemented")
}
cv.ccsvm.formula <- function(formula, data, weights, contrasts=NULL, ...){
## extract x, y, etc from the model formula and frame
if(!attr(terms(formula, data=data), "intercept"))
stop("non-intercept model is not implemented with model formula, try model matrix instead")
if(missing(data)) data <- environment(formula)
mf <- match.call(expand.dots = FALSE)
m <- match(c("formula", "data", "weights"), names(mf), 0L)
mf <- mf[c(1L, m)]
mf$drop.unused.levels <- TRUE
mf[[1L]] <- as.name("model.frame")
mf <- eval(mf, parent.frame())
mt <- attr(mf, "terms") # allow model.frame to have updated it
Y <- model.response(mf, "any") # e.g. factors are allowed
## avoid problems with 1D arrays, but keep names
if(length(dim(Y)) == 1L) {
nm <- rownames(Y)
dim(Y) <- NULL
if(!is.null(nm)) names(Y) <- nm
}
## null model support
X <- if (!is.empty.model(mt)) model.matrix(mt, mf, contrasts) else matrix(,NROW(Y), 0L)
## avoid any problems with 1D or nx1 arrays by as.vector.
weights <- as.vector(model.weights(mf))
if(!length(weights)) weights <- rep(1, nrow(mf))
else if(any(weights < 0)) stop("negative weights not allowed")
if(!is.null(weights) && !is.numeric(weights))
stop("'weights' must be a numeric vector")
if(length(weights) != length(Y))
stop("'weights' must be the same length as response variable")
RET <- cv.ccsvm_fit(X[,-1], Y, weights,...)
RET$call <- match.call()
RET <- c(RET, list(formula=formula, terms = mt, data=data,
contrasts = attr(X, "contrasts"),
xlevels = .getXlevels(mt, mf)))
RET
}
cv.ccsvm.matrix <- function(x, y, weights, ...){
RET <- cv.ccsvm_fit(x, y, weights,...)
RET$call <- match.call()
return(RET)
}
cv.ccsvm_fit <- function(x,y, weights, cfun="ccave", s=c(1, 5), type=NULL,
kernel = "radial",
#degree = 3,
gamma = 2^(-4:10),
#coef0 = 0,
cost = 2^(-4:4),
#class.weights = NULL,
#cachesize = 100,
#tolerance = 0.001,
epsilon = 0.1,
#shrinking = TRUE,
#probability = FALSE,
#fitted = TRUE,
#subset,
#na.action,
balance=TRUE,
nfolds=10, foldid, trim_ratio=0.9, n.cores=2,
...){
call <- match.call()
## determine model type
if (is.null(type)) type <-
if (is.factor(y)) "C-classification"
else "eps-regression"
sval <- s
costseq <- cost
if(kernel=="linear") gammaseq <- 0 else gammaseq <- gamma
if(is.null(dim(x))) x <- as.matrix(x)
nm <- dim(x)
nobs <- n <- nm[1]
nvars <- m <- nm[2]
## avoid any problems with 1D or nx1 arrays by as.vector.
if(missing(weights)) weights=rep(1,n)
weights <- as.vector(weights)
if(!is.null(weights) && !is.numeric(weights))
stop("'weights' must be a numeric vector")
## check weights
if( !is.null(weights) && any(weights < 0) ){
stop("negative weights not allowed")
}
if(length(weights) != length(y))
stop("'weights' must be the same length as response variable")
K <- nfolds
if(missing(foldid)){
if(type %in% c("C-classification", "nu-classification") && balance)
invisible(capture.output(all.folds <- eval(parse(text="pamr:::balanced.folds(y, K)"))))
else all.folds <- cv.folds(n, K)
}
else all.folds <- foldid
cl <- eval(parse(text="parallel:::makeCluster(n.cores)"))
registerDoParallel(cl)
i <- ii <- jj <- l <- 1
residmat <- foreach(i=seq(K), .combine=cbind)%:%
foreach(l=sval, .combine='rbind')%:%
foreach(ii=gammaseq, .combine='rbind')%:%
foreach(jj=costseq, .combine='rbind', .packages="mpath") %dopar%{
#residmat <- NULL; for(i in seq(K)) for(l in sval) for(ii in gammaseq) for(jj in costseq){
omit <- all.folds[[i]]
m <- try(ccsvm(x[-omit,,drop=FALSE], y[-omit], weights=weights[-omit], cfun=cfun, cost=jj, gamma=ii, s=l, type=type, ...), silent=TRUE)
if(!inherits(m, "try-error")){
new <- predict(m, x[omit,,drop=FALSE], weights=weights[omit])
if(type%in%c("C-classification", "nu-classification")) errorTU <- mean(new!=y[omit])
else {
mloss <- (y[omit]-new)^2
mloss1 <- order(mloss, decreasing=FALSE)
mloss2 <- mloss1[1:(length(omit)*trim_ratio)]
errorTU <- mean(mloss[mloss2]) #trimmed MSE
}
c(l, ii, jj, errorTU)
#residmat <- rbind(residmat, c(l, ii, jj, errorTU))
}
}
eval(parse(text="parallel:::stopCluster(cl)"))
kseq <- 4*(1:K)
dl <- length(dim(residmat))
if (!dl)
stop("no parameters are valid for SVM")
err <- apply(residmat[,kseq], 1, mean) #average error cross K folds
opt <- residmat[which.min(err), 1:3]
if(kernel=="linear"){
residmat <- residmat[, -2*(1:K)]
colnames(residmat) <- rep(c("s", "cost", "error"), K)
}else colnames(residmat) <- rep(c("s", "gamma", "cost", "error"), K)
RET <- list(residmat=residmat, cost=opt[3], gamma=opt[2], s=opt[1])
RET
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.