Description Usage Arguments Value Version Date submitted Data type Author(s) See Also Examples
Process module which adds a random uniform covariate to the dataset. This new covariate can be scaled to an existing covariate.
1 | AddRandomUniformPredictors(.data, name = "RandUnif", scaleTo = NULL)
|
.data |
Internal parameter, do not use in the workflow function. |
name |
Optional argument specifying the name of the new covariate layer. If not specified, it will automatically named. |
scaleTo |
Optional argument specifying the name of an existing covariate layer which the new random uniform covariate will be scaled to. |
a Raster object with the appended random uniform covariate.
1.01
2016-06-15
presence-only, presence/absence, abundance, proportion
James Campbell, jamesadamcampbell@gmail.com
Other process: BackgroundAndCrossvalid,
Background, Bootstrap,
CarolinaWrenValidation,
Clean, Crossvalidate,
JitterOccurrence,
LonLatToCovariates, MESSMask,
NoProcess,
OneHundredBackground,
OneThousandBackground,
PartitionDisc, RemoveNAs,
StandardiseCov,
SubsampleOccurrence,
TargetGroupBackground,
Transform, addInteraction,
spThin
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | work1 <- workflow(occurrence = UKAnophelesPlumbeus,
covariate = UKAir,
process = Chain(OneHundredBackground,
AddRandomUniformPredictors(scaleTo = 'layer', name = 'Random.layer'),
AddRandomUniformPredictors(scaleTo = 'layer'),
AddRandomUniformPredictors),
model = LogisticRegression,
output = PerformanceMeasures)
### Display resulting covariate maps from each workflow
spplot(work1$process.output[[1]]$ras$layer)
spplot(work1$process.output[[1]]$ras$Random.layer.1)
spplot(work1$process.output[[1]]$ras$RandUnif.1)
spplot(work1$process.output[[1]]$ras$RandUnif.2)
### Show resulting model
work1$model.output[[1]]$model$model
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.