#' Longitudinal Average Treatment Effect
#' Parameter for ATE in (L0 A0 L1 A1 ... Y) data structure with any number of time dependent covariates and treatments.
#' Supports arbitrarily many time points.
#' Parameter definition for the Longitudinal Average Treatment Effect (LATE).
#' @importFrom R6 R6Class
#' @importFrom uuid UUIDgenerate
#' @importFrom methods is
#' @family Parameters
#' @keywords data
#'
#' @return \code{Param_base} object
#'
#' @format \code{\link{R6Class}} object.
#'
#' @section Constructor:
#' \code{define_param(Param_ATT, observed_likelihood, intervention_list, ..., outcome_node)}
#'
#' \describe{
#' \item{\code{observed_likelihood}}{A \code{\link{Likelihood}} corresponding to the observed likelihood
#' }
#' \item{\code{intervention_list_treatment}}{A list of objects inheriting from \code{\link{LF_base}}, representing the treatment intervention.
#' }
#' \item{\code{intervention_list_control}}{A list of objects inheriting from \code{\link{LF_base}}, representing the control intervention.
#' }
#' \item{\code{...}}{Not currently used.
#' }
#' \item{\code{outcome_node}}{character, the name of the node that should be treated as the outcome
#' }
#' }
#'
#' @section Fields:
#' \describe{
#' \item{\code{cf_likelihood_treatment}}{the counterfactual likelihood for the treatment
#' }
#' \item{\code{cf_likelihood_control}}{the counterfactual likelihood for the control
#' }
#' \item{\code{intervention_list_treatment}}{A list of objects inheriting from \code{\link{LF_base}}, representing the treatment intervention
#' }
#' \item{\code{intervention_list_control}}{A list of objects inheriting from \code{\link{LF_base}}, representing the control intervention
#' }
#' }
#' @export
Param_LATE <- R6Class(
classname = "Param_LATE",
portable = TRUE,
class = TRUE,
inherit = Param_base,
public = list(
initialize = function(observed_likelihood, intervention_list_treatment, intervention_list_control, outcome_node = "Y") {
all_nodes <- names(observed_likelihood$training_task$npsem)
A_nodes <- grep("A", all_nodes, value = T)
L_nodes <- grep("L", all_nodes, value = T)
private$.update_nodes <- c(L_nodes, outcome_node)
super$initialize(observed_likelihood, list(), outcome_node)
private$.cf_likelihood_treatment <- CF_Likelihood$new(observed_likelihood, intervention_list_treatment)
private$.cf_likelihood_control <- CF_Likelihood$new(observed_likelihood, intervention_list_control)
# Train the gradient
private$.gradient <- Gradient$new(observed_likelihood,
ipw_args = list(cf_likelihood_treatment = self$cf_likelihood_treatment, cf_likelihood_control = self$cf_likelihood_control),
projection_task_generator = gradient_generator_late,
target_nodes = self$update_nodes)
if(inherits(observed_likelihood, "Targeted_Likelihood")){
fold_number <- observed_likelihood$updater$update_fold
} else {
fold_number <- "full"
}
private$.gradient$train_projections(self$observed_likelihood$training_task, fold_number = fold_number)
},
clever_covariates = function(tmle_task = NULL, fold_number = "full", node = NULL) {
if (is.null(tmle_task)) {
tmle_task <- self$observed_likelihood$training_task
}
print(tmle_task$uuid)
print(node)
update_nodes <- intersect(self$update_nodes, attr(tmle_task, "target_nodes"))
if(!is.null(node)){
update_nodes <- c(node)
}
islong = F
if(is.null(update_nodes)){
update_nodes <- self$update_nodes
} else {
islong= T
}
print(update_nodes)
EICs <- lapply(update_nodes, function(node){
return(self$gradient$compute_component(tmle_task, node, fold_number = fold_number)$EIC)
})
names(EICs) <- update_nodes
return(EICs)
},
estimates = function(tmle_task = NULL, fold_number = "full") {
if (is.null(tmle_task)) {
tmle_task <- self$observed_likelihood$training_task
}
intervention_nodes <- union(names(self$intervention_list_treatment), names(self$intervention_list_control))
# clever_covariates happen here (for this param) only, but this is repeated computation
EIC <- (do.call(cbind, self$clever_covariates(tmle_task, fold_number)))
#TODO need to montecarlo simulate from likleihood to eval parameter.
# todo: make sure we support updating these params
# pA <- self$observed_likelihood$get_likelihoods(tmle_task, intervention_nodes, fold_number)
# cf_pA_treatment <- self$cf_likelihood_treatment$get_likelihoods(tmle_task, intervention_nodes, fold_number)
# cf_pA_control <- self$cf_likelihood_control$get_likelihoods(tmle_task, intervention_nodes, fold_number)
#
# # todo: extend for stochastic
# cf_task_treatment <- self$cf_likelihood_treatment$enumerate_cf_tasks(tmle_task)[[1]]
# cf_task_control <- self$cf_likelihood_control$enumerate_cf_tasks(tmle_task)[[1]]
#
# Y <- tmle_task$get_tmle_node(self$outcome_node, impute_censoring = TRUE)
#
# EY <- self$observed_likelihood$get_likelihood(tmle_task, self$outcome_node, fold_number)
# EY1 <- self$observed_likelihood$get_likelihood(cf_task_treatment, self$outcome_node, fold_number)
# EY0 <- self$observed_likelihood$get_likelihood(cf_task_control, self$outcome_node, fold_number)
#
# psi <- mean(EY1 - EY0)
#
# IC <- EIC + (EY1 - EY0) - psi
psi = rep(0, length(EIC))
IC <- rowSums(EIC)
result <- list(psi = psi, IC = IC, EIC = colMeans(EIC))
return(result)
}
),
active = list(
name = function() {
param_form <- sprintf("ATE[%s_{%s}-%s_{%s}]", self$outcome_node, self$cf_likelihood_treatment$name, self$outcome_node, self$cf_likelihood_control$name)
return(param_form)
},
cf_likelihood_treatment = function() {
return(private$.cf_likelihood_treatment)
},
cf_likelihood_control = function() {
return(private$.cf_likelihood_control)
},
intervention_list_treatment = function() {
return(self$cf_likelihood_treatment$intervention_list)
},
intervention_list_control = function() {
return(self$cf_likelihood_control$intervention_list)
},
update_nodes = function() {
return(c(private$.update_nodes))
},
gradient = function(){
private$.gradient
}
),
private = list(
.type = "ATE",
.cf_likelihood_treatment = NULL,
.cf_likelihood_control = NULL,
.supports_outcome_censoring = FALSE,
.gradient = NULL,
.submodel_type_supported = c("EIC"),
.update_nodes = NULL
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.