#' Estimates the threshold function E_W E[Y | A >=c, W] for a range of given values threshold values c
#'
#' @importFrom R6 R6Class
#' @importFrom uuid UUIDgenerate
#' @importFrom methods is
#' @importFrom dplyr near
#' @family Parameters
#' @keywords data
#'
#' @return \code{Param_base} object
#'
#' @format \code{\link{R6Class}} object.
#'
#' @section Constructor:
#' \code{define_param(Param_ATT, observed_likelihood, intervention_list, ..., outcome_node)}
#'
#' \describe{
#' \item{\code{observed_likelihood}}{A \code{\link{Likelihood}} corresponding to the observed likelihood
#' }
#' \item{\code{intervention_list_treatment}}{A list of objects inheriting from \code{\link{LF_base}}, representing the treatment intervention.
#' }
#' \item{\code{intervention_list_control}}{A list of objects inheriting from \code{\link{LF_base}}, representing the control intervention.
#' }
#' \item{\code{...}}{Not currently used.
#' }
#' \item{\code{outcome_node}}{character, the name of the node that should be treated as the outcome
#' }
#' }
#'
#' @section Fields:
#' \describe{
#' \item{\code{cf_likelihood_treatment}}{the counterfactual likelihood for the treatment
#' }
#' \item{\code{cf_likelihood_control}}{the counterfactual likelihood for the control
#' }
#' \item{\code{intervention_list_treatment}}{A list of objects inheriting from \code{\link{LF_base}}, representing the treatment intervention
#' }
#' \item{\code{intervention_list_control}}{A list of objects inheriting from \code{\link{LF_base}}, representing the control intervention
#' }
#' }
#' @export
Param_thresh <- R6Class(
classname = "Param_thresh",
portable = TRUE,
class = TRUE,
inherit = Param_base,
public = list(
initialize = function(observed_likelihood, cutoffs, thresh_node = "A", outcome_node = "Y") {
super$initialize(observed_likelihood, list(), outcome_node = outcome_node)
cf_task <- observed_likelihood$training_task
# cf_data where everyone is the maximum level of of the node so that they are above threshhold in every group
cf_task$data
cf_data <- data.table(rep(2*max(cutoffs), cf_task$nrow))
setnames(cf_data, thresh_node)
cf_data$id <- cf_task$id
cf_data$t <- cf_task$time
cf_task <- cf_task$generate_counterfactual_task(UUIDgenerate(), cf_data)
#cache task
observed_likelihood$get_likelihood(cf_task, "Y")
private$.censoring_node <- (observed_likelihood$censoring_nodes[[outcome_node]])
private$.thresh_node <- thresh_node
private$.cutoffs <- cutoffs
private$.strict_threshold <- F
private$.cf_task <- cf_task
},
clever_covariates = function(tmle_task = NULL, fold_number = "full") {
if (is.null(tmle_task)) {
tmle_task <- self$observed_likelihood$training_task
}
thresh_node <- private$.thresh_node
censoring_node <- private$.censoring_node
cutoffs <- private$.cutoffs
cdfS <- as.vector(self$observed_likelihood$get_likelihood(tmle_task, thresh_node, fold_number))
cdfS <- bound(cdfS, c(0.0005, .9995))
S <- tmle_task$get_tmle_node(thresh_node)
if(!is.null(censoring_node)) {
pCensoring <- self$observed_likelihood$get_likelihood(tmle_task, censoring_node, fold_number)
uncensored <- as.vector(as.numeric(as.numeric(tmle_task$get_tmle_node(censoring_node))==1))
} else {
pCensoring <- 1
uncensored <- 1
}
if(private$.strict_threshold) {
indS <- as.vector(unlist(lapply(cutoffs, function(cutoff) {as.numeric(S >= cutoff)})))
} else {
indS <- as.vector(unlist(lapply(cutoffs, function(cutoff) {as.numeric(S >= cutoff)})))
}
#Uses
HA <- indS * uncensored / (pCensoring * (1-cdfS))
n = tmle_task$nrow
k = length(cutoffs)
H <- matrix(0, nrow = length(HA), ncol = k)
for(i in 1:k){
first <- (i-1)*n + 1
last <- (i)*n
H[first:last,i] <- HA[first:last]
}
if(any(!dplyr::near(rowSums(H),HA))){
stop("oops")
}
if(length(indS)!= length(cdfS)) {
stop("Uneven lengths in cdfS and indS")
}
return(list(Y = H))
},
estimates = function(tmle_task = NULL, fold_number = "full") {
if (is.null(tmle_task)) {
tmle_task <- self$observed_likelihood$training_task
}
thresh_node <- private$.thresh_node
censoring_node <- private$.censoring_node
cutoffs <- private$.cutoffs
cf_task <- private$.cf_task
intervention_nodes <- union(names(self$intervention_list_treatment), names(self$intervention_list_control))
# clever_covariates happen here (for this param) only, but this is repeated computation
HA <- matrix(rowSums(self$clever_covariates(tmle_task, fold_number)[[self$outcome_node]]), nrow = tmle_task$nrow)
Y <- matrix(tmle_task$get_tmle_node(self$outcome_node, impute_censoring = TRUE), nrow = tmle_task$nrow)
#get E[Y|A>=1, W]
EY <- matrix(self$observed_likelihood$get_likelihood(tmle_task, self$outcome_node, fold_number), nrow = tmle_task$nrow)
#get E[Y|A>=1, W]
EY1 <- matrix(self$observed_likelihood$get_likelihood(cf_task, self$outcome_node, fold_number), nrow = tmle_task$nrow)
psi <- colMeans(EY1)
IC <- HA * (as.vector(Y) - EY) + t((t(EY1) - psi))
weights <- tmle_task$get_regression_task(self$outcome_node)$weights
result <- list(psi = psi, IC = IC * weights)
return(result)
}
),
active = list(
name = function() {
param_form <- sprintf("ATE[%s_{%s}-%s_{%s}]", self$outcome_node, self$cf_likelihood_treatment$name, self$outcome_node, self$cf_likelihood_control$name)
return(param_form)
},
cf_task = function() {
return(private$.cf_task)
},
update_nodes = function() {
return(c(self$outcome_node))
}
),
private = list(
.type = "Threshold",
.cf_likelihood_treatment = NULL,
.cf_likelihood_control = NULL,
.supports_outcome_censoring = TRUE,
.submodel_type_supported = c("logistic"),
.supports_weights = T,
.censoring_node = NULL,
.thresh_node = NULL,
.cutoffs = NULL,
.strict_threshold = NULL,
.cf_task = NULL
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.