depthLocal: Local depth

Description Usage Arguments Details References Examples

View source: R/depthLocal.R View source: R/depthLocal.R

Description

Computes local version of depth according to proposals of Paindaveine and Van Bever — see referencess.

Usage

1
2
depthLocal(u, X, beta = 0.5, depth_params1 = list(method =
  "Projection"), depth_params2 = depth_params1)

Arguments

u

Numerical vector or matrix whose depth is to be calculated. Dimension has to be the same as that of the observations.

X

The data as a matrix, data frame. If it is a matrix or data frame, then each row is viewed as one multivariate observation.

beta

cutoff value for neighbourhood

depth_params1

list of parameters for function depth (method, threads, ndir, la, lb, pdim, mean, cov, exact).

depth_params2

as above — default is depth_params1.

Details

A successful concept of local depth was proposed by Paindaveine and Van Bever (2012). For defining a neighbourhood of a point authors proposed using idea of symmetrisation of a distribution (a sample) with respect to a point in which depth is calculated. In their approach instead of a distribution {P} ^ {X} , a distribution {{P}_{x}} = \frac{ 1 }{ 2 }{{P} ^ {X}} + \frac{ 1 }{ 2 }{{P} ^ {2x - X}} is used. For any β \in [0, 1] , let us introduce the smallest depth region bigger or equal to β ,

{R} ^ {β}(F) = \bigcap\limits_{α \in A(β)} {{{D}_{α}}}(F),

where A(β) = ≤ft\{ α ≥ 0:P≤ft[ {{D}_{α}}(F)\right] ≥ β\right\} . Then for a locality parameter β we can take a neighbourhood of a point x as R_{x} ^ {β}(P) .

Formally, let D(\cdot, P) be a depth function. Then the local depth with the locality parameter β and w.r.t. a point x is defined as

L{{D} ^ {β}}(z, P):z \to D(z, P_{x} ^ {β}),

where P_{x} ^ {β}(\cdot) = P≤ft( \cdot |R_{x} ^ {β}(P)\right) is cond. distr. of P conditioned on R_{x} ^ {β}(P) .

References

Paindaveine, D., Van Bever, G. (2013) From depth to local depth : a focus on centrality. Journal of the American Statistical Association 105, 1105–1119.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
## Not run: 
# EXAMPLE 1
data <- mvrnorm(100, c(0, 5), diag(2) * 5)
# By default depth_params2 = depth_params1
depthLocal(data, data, depth_params1 = list(method = "LP"))
depthLocal(data, data, depth_params1 = list(method = "LP"),
           depth_params2 = list(method = "Projection"))
# Depth contour
depthContour(data, depth_params = list(method = "Local", depth_params1 = list(method = "LP")))

# EXAMPLE 2
data(inf.mort, maesles.imm)
data1990 <- na.omit(cbind(inf.mort[, 1], maesles.imm[, 1]))
depthContour(data1990,
             depth_params = list(
               method = "Local",
               depth_params1 = list(method = "LP"),
               beta = 0.3
             ))

# EXAMPLE 3
Sigma1 <- matrix(c(10, 3, 3, 2), 2, 2)
X1 <- mvrnorm(n = 8500, mu = c(0, 0), Sigma1)
Sigma2 <- matrix(c(10, 0, 0, 2), 2, 2)
X2 <- mvrnorm(n = 1500, mu = c(-10, 6), Sigma2)
BALLOT <- rbind(X1, X2)

train <- sample(1:10000, 100)
data <- BALLOT[train, ]
depthContour(data,
            depth_params = list(
              method = "Local",
              beta = 0.3,
              depth_params1 = list(method = "Projection")
            ))

## End(Not run)

zzawadz/DepthProc documentation built on Sept. 27, 2018, 9:11 a.m.