| DMD.DM.fit | R Documentation | 
Fit the specified multivariate discrete distribution.
DMD.DM.fit( data, init, weight, epsilon = 1e-08, maxiters = 150, display = FALSE ) DMD.GDM.fit( data, init, weight, epsilon = 1e-08, maxiters = 150, display = FALSE ) DMD.NegMN.fit( data, init, weight, epsilon = 1e-08, maxiters = 150, display = FALSE ) MGLMfit( data, dist, init, weight, epsilon = 1e-08, maxiters = 150, display = FALSE )
| data | a data frame or matrix containing the count data. Rows of the matrix represent observations and columns are the categories. Rows and columns of all zeros are automatically removed. | 
| init | an optional vector of initial value of the parameter estimates. Should have the same dimension as the estimated parameters. See  | 
| weight | an optional vector of weights assigned to each row of the data. Should be Null or a numeric vector with the length equal to the number of rows of  | 
| epsilon | an optional numeric controlling the stopping criterion. The algorithm terminates when the relative change in the log-likelihoods of two successive iterates is less than  | 
| maxiters | an optional number controlling the maximum number of iterations. The default value is  | 
| display | an optional logical variable controlling the display of iterations. The default value is FALSE. | 
| dist | a description of the distribution to fit. Choose from  | 
See dist for details about model parameterization.
Returns an object of S4 class "MGLMfit". An object of class "MGLMfit" is a list containing at least the following components: 
estimate the vector of the distribution prameter estimates.
SE the vector of standard errors of the estimates.
vcov the variance-covariance matrix of the estimates.
logL the loglikelihood value.
iter the number of iterations used.
BIC Bayesian information criterion.
AIC Akaike information criterion.
distribution the distribution fitted.
LRT when dist="DM" or "GDM", it is the likelihood ratio test statistic for comparing the current model to the multinomial model. No LRT provided when dist="NegMN". 
LRTpvalue the likelihood ratio test P value.
gradient the gradient at the estimated parameter values.
DoF the degrees of freedom of the model.
Yiwen Zhang and Hua Zhou
data(rnaseq) Y <- as.matrix(rnaseq[, 1:6]) fit <- MGLMfit(data=Y, dist="GDM")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.