Description Usage Arguments Details Value Examples
This is a collection of helper methods for the ClusterExperiment class.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 | ## S4 method for signature 'ClusterExperiment'
show(object)
## S4 method for signature 'ClusterExperiment'
transformation(x)
## S4 replacement method for signature 'ClusterExperiment,'function''
transformation(object) <- value
## S4 method for signature 'ClusterExperiment'
nClusterings(x)
## S4 method for signature 'ClusterExperiment'
nClusters(x, ignoreUnassigned = TRUE)
## S4 method for signature 'ClusterExperiment'
nFeatures(x)
## S4 method for signature 'ClusterExperiment'
nSamples(x)
## S4 method for signature 'ClusterExperiment'
clusterMatrixNamed(x, whichClusters = "all")
## S4 method for signature 'ClusterExperiment'
clusterMatrixColors(x, whichClusters = "all")
## S4 method for signature 'ClusterExperiment'
clusterMatrix(x, whichClusters)
## S4 method for signature 'ClusterExperiment'
primaryCluster(x)
## S4 method for signature 'ClusterExperiment'
primaryClusterIndex(x)
## S4 method for signature 'ClusterExperiment'
primaryClusterLabel(x)
## S4 method for signature 'ClusterExperiment'
primaryClusterNamed(x)
## S4 method for signature 'ClusterExperiment'
primaryClusterType(x)
## S4 replacement method for signature 'ClusterExperiment,numeric'
primaryClusterIndex(object) <- value
## S4 method for signature 'ClusterExperiment'
dendroClusterIndex(x)
## S4 method for signature 'ClusterExperiment'
coClustering(x)
## S4 replacement method for signature 'ClusterExperiment,matrix'
coClustering(object) <- value
## S4 replacement method for signature 'ClusterExperiment,dsCMatrix'
coClustering(object) <- value
## S4 replacement method for signature 'ClusterExperiment,numeric'
coClustering(object) <- value
## S4 method for signature 'ClusterExperiment'
clusterTypes(x)
## S4 method for signature 'ClusterExperiment'
clusteringInfo(x)
## S4 method for signature 'ClusterExperiment'
clusterLabels(x)
## S4 replacement method for signature 'ClusterExperiment,character'
clusterLabels(object) <- value
## S4 method for signature 'ClusterExperiment'
clusterLegend(x)
## S4 replacement method for signature 'ClusterExperiment,list'
clusterLegend(object) <- value
## S4 method for signature 'ClusterExperiment'
orderSamples(x)
## S4 replacement method for signature 'ClusterExperiment,numeric'
orderSamples(object) <- value
## S4 replacement method for signature 'ClusterExperiment,character'
clusterTypes(object) <- value
## S4 method for signature 'ClusterExperiment'
addToColData(object, ...)
## S4 method for signature 'ClusterExperiment'
colDataClusters(
object,
whichClusters = "primary",
useNames = TRUE,
makeFactor = TRUE,
...
)
|
x, object |
a ClusterExperiment object. |
value |
The value to be substituted in the corresponding slot. See the
slot descriptions in |
ignoreUnassigned |
logical. If true, ignore the clusters with -1 or -2 assignments in calculating the number of clusters per clustering. |
whichClusters |
argument that can be either numeric or character vector
indicating the clusterings to be used. See details of |
... |
For |
useNames |
for |
makeFactor |
logical for |
Note that redefining the transformation function via
transformation(x)<-
will check the validity of the transformation on
the data assay. If the assay is large, this may be time consuming. Consider
using a call to ClusterExperiment, which has the option as to whether to
check the validity of the transformation.
transformation
prints the function used to transform the data
prior to clustering.
nClusterings
returns the number of clusterings (i.e., ncol of
clusterMatrix).
nClusters
returns the number of clusters per clustering
nFeatures
returns the number of features (same as 'nrow').
nSamples
returns the number of samples (same as 'ncol').
clusterMatrixNamed
returns a matrix with cluster labels.
clusterMatrixColors
returns the matrix with all the
clusterings, using the internally stored colors for each cluster
clusterMatrix
returns the matrix with all the clusterings.
primaryCluster
returns the primary clustering (as numeric).
primaryClusterIndex
returns/sets the primary clustering index
(i.e., which column of clusterMatrix corresponds to the primary clustering).
primaryClusterIndex
returns/sets the primary clustering index
(i.e., which column of clusterMatrix corresponds to the primary clustering).
primaryClusterNamed
returns the primary cluster (using cluster
labels).
primaryClusterIndex
returns/sets the primary clustering index
(i.e., which column of clusterMatrix corresponds to the primary clustering).
dendroClusterIndex
returns/sets the clustering index
of the clusters used to create dendrogram
(i.e., which column of clusterMatrix corresponds to the clustering).
coClustering
returns/sets the co-clustering matrix.
clusterTypes
returns/sets the clusterTypes slot.
clusteringInfo
returns the clusterInfo slot.
clusterLabels
returns/sets the column names of the
clusterMatrix slot.
clusterLegend
returns/sets the clusterLegend slot.
orderSamples
returns/sets the orderSamples slot.
addToColData
returns a ClusterExperiment
object
with the clusterings in clusterMatrix slot added to the colData
slot
colDataClusters
returns a DataFrame
object
that has the clusterings in clusterMatrix slot added to the
DataFrame
in the colData
slot
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | # load data:
data(rsecFluidigm)
show(rsecFluidigm)
#Number of clusterings
nClusterings(rsecFluidigm)
# Number of clusters per clustering
nClusters(rsecFluidigm)
# Number of features/samples
nSamples(rsecFluidigm)
nFeatures(rsecFluidigm)
# retrieve all clustering assignments
# (either as cluster ids, cluster names or cluster colors)
head(clusterMatrix(rsecFluidigm)[,1:5])
head(clusterMatrixNamed(rsecFluidigm)[,1:5])
head(clusterMatrixColors(rsecFluidigm)[,1:5])
# clustering Types/Labels
clusterTypes(rsecFluidigm)
clusterLabels(rsecFluidigm)
# Add a clustering assignment to the colData of the object
# (useful if working with function that relies on colData)
colData(rsecFluidigm)
test<-addToColData(rsecFluidigm,whichCluster="primary")
colData(test)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.