View source: R/lav_residuals.R
lavResiduals | R Documentation |
‘lavResiduals’ provides model residuals and standardized residuals from a fitted lavaan object, as well as various summaries of these residuals.
The ‘residuals()’ (and ‘resid()’) methods are just shortcuts to this function with a limited set of arguments.
lavResiduals(object, type = "cor.bentler", custom.rmr = NULL,
se = FALSE, zstat = TRUE, summary = TRUE, h1.acov = "unstructured",
add.type = TRUE, add.labels = TRUE, add.class = TRUE,
drop.list.single.group = TRUE,
maximum.number = length(res.vech), output = "list")
object |
An object of class |
type |
Character.
If |
custom.rmr |
|
se |
Logical. If |
zstat |
Logical. If |
summary |
Logical. If |
h1.acov |
Character. If |
add.type |
Logical. If |
add.labels |
If |
add.class |
If |
drop.list.single.group |
If |
maximum.number |
Integer. Only used if |
output |
Character. By default, |
If drop.list.single.group = TRUE
, a list of (residualized) summary
statistics, including type, standardized residuals, and summaries. If
drop.list.single.group = FALSE
, the list of summary statistics is nested
within a list for each group.
Bentler, P.M. and Dijkstra, T. (1985). Efficient estimation via linearization in structural models. In Krishnaiah, P.R. (Ed.), Multivariate analysis - VI, (pp. 9–42). New York, NY: Elsevier.
Ogasawara, H. (2001). Standard errors of fit indices using residuals in structural equation modeling. Psychometrika, 66(3), 421–436. doi:10.1007/BF02294443
Maydeu-Olivares, A. (2017). Assessing the size of model misfit in structural equation models. Psychometrika, 82(3), 533–558. doi:10.1007/s11336-016-9552-7
Standardized Residuals in Mplus. Document retrieved from URL http://www.statmodel.com/download/StandardizedResiduals.pdf
HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '
fit <- cfa(HS.model, data = HolzingerSwineford1939)
lavResiduals(fit)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.