LBN_bin_plot | R Documentation |
LBN_bin_plot(
binValsTibble = NULL,
binBreaks = NULL,
binCounts = NULL,
b.MLE,
b.confMin,
b.confMax,
plot.binned.fitted = TRUE,
log.xy = "xy",
xLim = NA,
yLim = NA,
rect.col = "grey",
logLabels = FALSE,
xLabel.small = c(2, 5, 20, 50, 200, 500),
yLabel.small = c(5, 50, 500),
xLab = expression(paste("Body mass ", italic(x), "(g)")),
yLab = "Normalised biomass",
x.PLB = NA,
legend = TRUE,
leg.pos = "topright",
inset = c(0, 0),
leg.text = "(a)",
...
)
binValsTibble |
tibble of binned data with each row representing a bin
and with columns |
binBreaks |
vector of bin breaks |
binCounts |
vector of bin counts |
b.MLE |
maximum likelihood estimate of b (ideally from the MLEbin method) |
b.confMin |
lower 95\ \itemb.confMaxupper 95\ \itemplot.binned.fittedif TRUE then also plot the estimated normalised biomass in each bin for the MLE of b and it's confidence limits \itemlog.xyWhich axes to log, for x.PLBvector of values to use to plot the fitted PLB curve; if NA then automatically calculated \itemlegendif TRUE then add legend \itemleg.posposition of legend, from "bottomright"', '"bottom"', '"bottomleft"', '"left"', '"topleft"', '"top"', '"topright"', '"right"' and '"center"'. \iteminsetinset distance vector for legend \itemleg.texttext for legend \item...further arguments to be passed to |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.