Description Usage Arguments Details Value References See Also Examples
A strategy using different Barzilai-Borwein steplengths to solve a nonlinear system of equations.
1 2 3 |
par |
A real vector argument to |
fn |
Nonlinear system of equation that is to be solved. A vector function that takes a real vector as argument and returns a real vector of the same length. |
method |
A vector of integers specifying which Barzilai-Borwein steplengths should be used in a consecutive manner. The methods will be used in the order specified. |
control |
A list of parameters governing the algorithm behaviour.
This list is the same as that for |
quiet |
logical indicating if messages about convergence success or failure should be suppressed |
... |
arguments passed fn (via the optimization algorithm). |
This wrapper is especially useful in problems where the algorithms
(dfsane or sane) are likely to experience difficulties in
convergence. When these algorithms with default parameters fail, i.e.
when convergence > 0 is obtained, a user might attempt various
strategies to find a root of the nonlinear system. The function BBsolve
tries the following sequential strategy:
Try a different BB steplength. Since the default is method = 2
for dfsane, the BBsolve wrapper tries method = c(2, 1, 3).
Try a different non-monotonicity parameter M for each method,
i.e. BBsolve wrapper tries M = c(50, 10) for each BB steplength.
Try with Nelder-Mead initialization. Since the default for
dfsane is NM = FALSE, BBsolve does NM = c(TRUE, FALSE).
The argument control defaults to a list with values
maxit = 1500, M = c(50, 10), tol = 1e-07, trace = FALSE,
triter = 10, noimp = 100, NM = c(TRUE, FALSE).
If control is specified as an argument, only values which are different
need to be given in the list. See dfsane for more details.
A list with the same elements as returned by dfsane
or sane. One additional element returned is cpar which
contains the control parameter settings used to obtain successful
convergence, or to obtain the best solution in case of failure.
R Varadhan and PD Gilbert (2009), BB: An R Package for Solving a Large System of Nonlinear Equations and for Optimizing a High-Dimensional Nonlinear Objective Function, J. Statistical Software, 32:4, http://www.jstatsoft.org/v32/i04/
BBoptim,
dfsane,
sane
multiStart
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | # Use a preset seed so test values are reproducable.
require("setRNG")
old.seed <- setRNG(list(kind="Mersenne-Twister", normal.kind="Inversion",
seed=1234))
broydt <- function(x) {
n <- length(x)
f <- rep(NA, n)
h <- 2
f[1] <- ((3 - h*x[1]) * x[1]) - 2*x[2] + 1
tnm1 <- 2:(n-1)
f[tnm1] <- ((3 - h*x[tnm1]) * x[tnm1]) - x[tnm1-1] - 2*x[tnm1+1] + 1
f[n] <- ((3 - h*x[n]) * x[n]) - x[n-1] + 1
f
}
p0 <- rnorm(50)
BBsolve(par=p0, fn=broydt) # this works
dfsane(par=p0, fn=broydt) # but this is highly unliikely to work.
# this implements the 3 BB steplengths with M = 50, and without Nelder-Mead initialization
BBsolve(par=p0, fn=broydt, control=list(M=50, NM=FALSE))
# this implements BB steplength 1 with M = 50 and 10, and both with and
# without Nelder-Mead initialization
BBsolve(par=p0, fn=broydt, method=1, control=list(M=c(50, 10)))
# identical to dfsane() with defaults
BBsolve(par=p0, fn=broydt, method=2, control=list(M=10, NM=FALSE))
|
Loading required package: setRNG
Successful convergence.
$par
[1] -0.5707612 -0.6819101 -0.7024859 -0.7062605 -0.7069519 -0.7070784
[7] -0.7071015 -0.7071058 -0.7071066 -0.7071067 -0.7071067 -0.7071068
[13] -0.7071068 -0.7071068 -0.7071068 -0.7071068 -0.7071068 -0.7071068
[19] -0.7071068 -0.7071068 -0.7071068 -0.7071068 -0.7071068 -0.7071068
[25] -0.7071068 -0.7071068 -0.7071068 -0.7071068 -0.7071068 -0.7071068
[31] -0.7071068 -0.7071068 -0.7071068 -0.7071067 -0.7071067 -0.7071065
[37] -0.7071061 -0.7071050 -0.7071019 -0.7070933 -0.7070700 -0.7070063
[43] -0.7068325 -0.7063577 -0.7050615 -0.7015252 -0.6918946 -0.6657975
[49] -0.5960353 -0.4164123
$residual
[1] 9.385509e-08
$fn.reduction
[1] 31.59999
$feval
[1] 281
$iter
[1] 255
$convergence
[1] 0
$message
[1] "Successful convergence"
$cpar
method M NM
3 50 0
Iteration: 0 ||F(x0)||: 4.468913
iteration: 10 ||F(xn)|| = 7.372656
iteration: 20 ||F(xn)|| = 2.148256
iteration: 30 ||F(xn)|| = 1.087926
iteration: 40 ||F(xn)|| = 1.837539
iteration: 50 ||F(xn)|| = 1.227962
iteration: 60 ||F(xn)|| = 1.173819
iteration: 70 ||F(xn)|| = 1.164419
iteration: 80 ||F(xn)|| = 1.116905
iteration: 90 ||F(xn)|| = 1.126721
iteration: 100 ||F(xn)|| = 1.112744
iteration: 110 ||F(xn)|| = 1.113586
iteration: 120 ||F(xn)|| = 1.115942
iteration: 130 ||F(xn)|| = 1.112886
$par
[1] -0.5706552 -0.6837528 -0.7044984 -0.7057360 -0.7087213 -0.7061261
[7] -0.6987339 -0.6990289 -0.7070646 -0.7002412 -0.7064187 -0.7075855
[13] -0.7067219 -0.7016219 -0.6943348 -0.6600190 -0.5448951 -0.1804689
[19] 0.6734614 1.5312355 -0.1678685 -0.5997800 -0.6774198 -0.7063091
[25] -0.7050525 -0.7029759 -0.7094338 -0.7060808 -0.7104785 -0.6995702
[31] -0.7145343 -0.6990088 -0.7072191 -0.6836870 -0.6969368 -0.6938772
[37] -0.6985233 -0.7016326 -0.7064762 -0.7041186 -0.7080469 -0.7058380
[43] -0.7078563 -0.7050803 -0.7057069 -0.7008472 -0.6920625 -0.6656979
[49] -0.5960234 -0.4164090
$residual
[1] 0.1538559
$fn.reduction
[1] 30.51206
$feval
[1] 456
$iter
[1] 130
$convergence
[1] 5
$message
[1] "Lack of improvement in objective function"
Warning message:
In dfsane(par = p0, fn = broydt) : Unsuccessful convergence.
Successful convergence.
$par
[1] -0.5707612 -0.6819101 -0.7024859 -0.7062605 -0.7069519 -0.7070784
[7] -0.7071015 -0.7071058 -0.7071066 -0.7071067 -0.7071067 -0.7071068
[13] -0.7071068 -0.7071068 -0.7071068 -0.7071068 -0.7071068 -0.7071068
[19] -0.7071068 -0.7071068 -0.7071068 -0.7071068 -0.7071068 -0.7071068
[25] -0.7071068 -0.7071068 -0.7071068 -0.7071068 -0.7071068 -0.7071068
[31] -0.7071068 -0.7071068 -0.7071068 -0.7071067 -0.7071067 -0.7071065
[37] -0.7071061 -0.7071050 -0.7071019 -0.7070933 -0.7070700 -0.7070063
[43] -0.7068325 -0.7063577 -0.7050615 -0.7015252 -0.6918946 -0.6657975
[49] -0.5960353 -0.4164123
$residual
[1] 9.385509e-08
$fn.reduction
[1] 31.59999
$feval
[1] 281
$iter
[1] 255
$convergence
[1] 0
$message
[1] "Successful convergence"
$cpar
method M NM
3 50 0
Successful convergence.
$par
[1] -0.5707611 -0.6819101 -0.7024861 -0.7062606 -0.7069518 -0.7070784
[7] -0.7071016 -0.7071058 -0.7071066 -0.7071067 -0.7071068 -0.7071068
[13] -0.7071068 -0.7071068 -0.7071068 -0.7071068 -0.7071068 -0.7071068
[19] -0.7071068 -0.7071068 -0.7071068 -0.7071068 -0.7071068 -0.7071068
[25] -0.7071068 -0.7071068 -0.7071068 -0.7071068 -0.7071068 -0.7071068
[31] -0.7071068 -0.7071068 -0.7071068 -0.7071067 -0.7071067 -0.7071065
[37] -0.7071061 -0.7071050 -0.7071019 -0.7070933 -0.7070700 -0.7070063
[43] -0.7068325 -0.7063577 -0.7050615 -0.7015252 -0.6918946 -0.6657975
[49] -0.5960353 -0.4164123
$residual
[1] 6.796092e-08
$fn.reduction
[1] 31.59999
$feval
[1] 54
$iter
[1] 31
$convergence
[1] 0
$message
[1] "Successful convergence"
$cpar
method M NM
1 50 0
Unsuccessful convergence.
$par
[1] -0.5706552 -0.6837528 -0.7044984 -0.7057360 -0.7087213 -0.7061261
[7] -0.6987339 -0.6990289 -0.7070646 -0.7002412 -0.7064187 -0.7075855
[13] -0.7067219 -0.7016219 -0.6943348 -0.6600190 -0.5448951 -0.1804689
[19] 0.6734614 1.5312355 -0.1678685 -0.5997800 -0.6774198 -0.7063091
[25] -0.7050525 -0.7029759 -0.7094338 -0.7060808 -0.7104785 -0.6995702
[31] -0.7145343 -0.6990088 -0.7072191 -0.6836870 -0.6969368 -0.6938772
[37] -0.6985233 -0.7016326 -0.7064762 -0.7041186 -0.7080469 -0.7058380
[43] -0.7078563 -0.7050803 -0.7057069 -0.7008472 -0.6920625 -0.6656979
[49] -0.5960234 -0.4164090
$residual
[1] 0.1538559
$fn.reduction
[1] 30.51206
$feval
[1] 456
$iter
[1] 130
$convergence
[1] 5
$message
[1] "Lack of improvement in objective function"
$cpar
method M NM
2 10 0
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.