Description Usage Format See Also Examples
Dataset created artificially for the examples section of the function oohbhoice()
.
1 |
A data frame with 80 observations on the following variables.
a vector of the identification number of the respondent.
a vector containing the gender of the respondent, taking male
or female
.
a vector containing the age of the respondent.
a vector of lower bid.
a vector of higher bid.
a vector of response to the first stage CV question, taking a value of 1
if the bid is accepted, and 0
otherwise.
a vector of response to the second stage CV question, taking a value of 1
if the bid is accepted, 0
if the bid is not accepted, and -9
if the respondent has no the second stage question.
1 2 3 4 5 6 7 8 9 10 11 | ## Parametric model
data(oohbsyn)
oohb1 <- oohbchoice(R1 + R2 ~ 1 | log(BL) + log(BH), data = oohbsyn)
summary(oohb1)
oohb2 <- oohbchoice(R1 + R2 ~ age + gender | log(BL) + log(BH), data = oohbsyn)
summary(oohb2)
## Non-parametric model
oohb3 <- turnbull.oohb(R1 + R2 ~ BL + BH, data = oohbsyn)
summary(oohb3)
plot(oohb3)
|
Loading required package: MASS
Loading required package: interval
Loading required package: survival
Loading required package: perm
Loading required package: Icens
Loading required package: MLEcens
Loading required package: Formula
Call:
oohbchoice(formula = R1 + R2 ~ 1 | log(BL) + log(BH), data = oohbsyn)
Formula:
R1 + R2 ~ 1 | log(BL) + log(BH)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.6665 0.9674 4.824 1e-06 ***
log(bid) -2.5628 0.5246 -4.885 1e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Distribution: log-logistic
Number of Obs.: 80
Log-likelihood: -70.391865
LR statistic: -0.000 on 0 DF, p-value: 1.000
AIC: 144.783731 , BIC: 149.547784
Iterations: 13 6
Convergence: TRUE
WTP estimates:
Mean : 8.04642
Mean : 6.359207 (truncated at the maximum bid)
Mean : 8.209596 (truncated at the maximum bid with adjustment)
Median: 6.177279
Call:
oohbchoice(formula = R1 + R2 ~ age + gender | log(BL) + log(BH), data = oohbsyn)
Formula:
R1 + R2 ~ age + gender | log(BL) + log(BH)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.718799 1.305157 3.6155 0.0003 ***
age -0.003988 0.022967 -0.1737 0.8621
gendermale 0.203367 0.453933 0.4480 0.6541
log(bid) -2.565100 0.524818 -4.8876 1e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Distribution: log-logistic
Number of Obs.: 80
Log-likelihood: -70.277697
LR statistic: 0.228 on 2 DF, p-value: 0.892
AIC: 148.555394 , BIC: 158.083500
Iterations: 27 8
Convergence: TRUE
WTP estimates:
Mean : 8.031227
Mean : 6.353733 (truncated at the maximum bid)
Mean : 8.193918 (truncated at the maximum bid with adjustment)
Median: 6.168739
Survival probability:
Upper Prob.
1 0 1.0000
2 2 0.9058
3 4 0.7646
4 6 0.5497
5 8 0.3113
6 10 0.1868
7 Inf 0.0000
WTP estimates:
Mean: 5.436373 (Kaplan-Meier)
Mean: 6.249617 (Spearman-Karber)
Median in: [ 6 , 8 ]
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.