lgamma1p | R Documentation |
log(gamma(a+1))
Compute
l\Gamma_1(a) := \log\Gamma(a+1) = \log(a\cdot \Gamma(a)) = \log a + \log \Gamma(a),
which is “in principle” the same as
log(gamma(a+1))
or lgamma(a+1)
,
accurately also for (very) small a
(0 < a < 0.5)
.
lgamma1p (a, tol_logcf = 1e-14, f.tol = 1, ...)
lgamma1p.(a, cutoff.a = 1e-6, k = 3)
lgamma1p_series(x, k)
lgamma1pC(x)
a , x |
a numeric vector. |
tol_logcf |
for |
f.tol |
numeric (factor) used in
|
... |
further optional arguments passed on to |
cutoff.a |
for |
k |
an integer, the number of terms in the series expansion used internally; currently for
|
lgamma1p()
is an R translation of the function (in Fortran) in
Didonato and Morris (1992) which uses a 40-degree polynomial approximation.
lgamma1p.(u)
for small |u|
uses up to 4 terms of
\Gamma(1+u) = 1 + u*(-\gamma_E + a_0 u + a_1 u^2 + a_2 u^3) + O(u^5),
where a_0 := (\psi'(1) + \psi(1)^2)/2 = (\pi^2/6 + \gamma_E^2)/2
,
and a_1
und a_2
are similarly determined.
Then log1p(.)
of the \Gamma(1+u) - 1
approximation above is used.
lgamma1p_series(x, k)
is a Taylor series approximation of order
k
, directly of l\Gamma_1(a) := \log \Gamma(a+1)
(mostly via
Maple
), which starts as
-\gamma_E x + \pi^2 x^2/ 12 + \dots
,
where \gamma_E
is Euler's constant 0.5772156649.
lgamma1pC()
is an interface to R's C API (‘Mathlib’ / ‘Rmath.h’)
function lgamma1p()
.
a numeric vector with the same attributes as a
.
Morten Welinder (C code of Jan 2005, see R's bug issue
\Sexpr[results=rd]{tools:::Rd_expr_PR(7307)}) for lgamma1p()
.
Martin Maechler, notably for lgamma1p_series()
which works
with package Rmpfr but otherwise may be much less
accurate than Morten's 40 term series!
Didonato, A. and Morris, A., Jr, (1992)
Algorithm 708: Significant digit computation of the incomplete beta function ratios.
ACM Transactions on Mathematical Software, 18, 360–373;
see also pbeta
.
Yet another algorithm, fully double precision accurate in [-0.2, 1.25]
,
is provided by gamln1()
.
log1pmx
, log1p
, pbeta
.
curve(lgamma1p, -1.25, 5, n=1001, col=2, lwd=2)
abline(h=0, v=-1:0, lty=c(2,3,2), lwd=c(1, 1/2,1))
for(k in 1:15)
curve(lgamma1p_series(x, k=k), add=TRUE, col=adjustcolor(paste0("gray",25+k*4), 2/3), lty = 3)
curve(lgamma1p, -0.25, 1.25, n=1001, col=2, lwd=2)
abline(h=0, v=0, lty=2)
for(k in 1:15)
curve(lgamma1p_series(x, k=k), add=TRUE, col=adjustcolor("gray20", 2/3), lty = 3)
curve(-log(x*gamma(x)), 1e-30, .8, log="xy", col="gray50", lwd = 3,
axes = FALSE, ylim = c(1e-30,1)) # underflows to zero at x ~= 1e-16
eaxGrid <- function(at.x = 10^(1-4*(0:8)), at.y = at.x) {
sfsmisc::eaxis(1, sub10 = c(-2, 2), nintLog=16)
sfsmisc::eaxis(2, sub10 = 2, nintLog=16)
abline(h = at.y, v = at.x, col = "lightgray", lty = "dotted")
}
eaxGrid()
curve(-lgamma( 1+x), add=TRUE, col="red2", lwd=1/2)# underflows even earlier
curve(-lgamma1p (x), add=TRUE, col="blue") -> lgxy
curve(-lgamma1p.(x), add=TRUE, col=adjustcolor("forest green",1/4),
lwd = 5, lty = 2)
for(k in 1:15)
curve(-lgamma1p_series(x, k=k), add=TRUE, col=paste0("gray",80-k*4), lty = 3)
stopifnot(with(lgxy, all.equal(y, -lgamma1pC(x))))
if(requireNamespace("Rmpfr")) { # accuracy comparisons, originally from ../tests/qgamma-ex.R
x <- 2^(-(500:11)/8)
x. <- Rmpfr::mpfr(x, 200)
## versions of lgamma1p(x) := lgamma(1+x)
## lgamma1p(x) = log gamma(x+1) = log (x * gamma(x)) = log(x) + lgamma(x)
xct. <- log(x. * gamma(x.)) # using MPFR arithmetic .. no overflow/underflow ...
xc2. <- log(x.) + lgamma(x.) # (ditto)
AllEq <- function(target, current, ...)
Rmpfr::all.equal(target, current, ...,
formatFUN = function(x, ...) Rmpfr::format(x, digits = 9))
print(AllEq(xct., xc2., tol = 0)) # 2e-57
rr <- vapply(1:15, function(k) lgamma1p_series(x, k=k), x)
colnames(rr) <- paste0("k=",1:15)
relEr <- Rmpfr::asNumeric(sfsmisc::relErrV(xct., rr))
## rel.error of direct simple computation:
relE.D <- Rmpfr::asNumeric(sfsmisc::relErrV(xct., lgamma(1+x)))
matplot(x, abs(relEr), log="xy", type="l", axes = FALSE,
main = "|rel.Err(.)| for lgamma(1+x) =~= lgamma1p_series(x, k = 1:15)")
eaxGrid()
p2 <- -(53:52); twp <- 2^p2; labL <- lapply(p2, function(p) substitute(2^E, list(E=p)))
abline(h = twp, lty=3)
axis(4, at=twp, las=2, line=-1, labels=as.expression(labL), col=NA,col.ticks=NA)
legend("topleft", paste("k =", 1:15), ncol=3, col=1:6, lty=1:5, bty="n")
lines(x, abs(relE.D), col = adjustcolor(2, 2/3), lwd=2)
legend("top", "lgamma(1+x)", col=2, lwd=2)
## zoom in:
matplot(x, abs(relEr), log="xy", type="l", axes = FALSE,
xlim = c(1e-5, 0.1), ylim = c(1e-17, 1e-10),
main = "|rel.Err(.)| for lgamma(1+x) =~= lgamma1p_series(x, k = 1:15)")
eaxGrid(10^(-5:1), 10^-(17:10))
abline(h = twp, lty=3)
axis(4, at=twp, las=2, line=-1, labels=as.expression(labL), col=NA,col.ticks=NA)
legend("topleft", paste("k =", 1:15), ncol=3, col=1:6, lty=1:5, bty="n")
lines(x, abs(relE.D), col = adjustcolor(2, 2/3), lwd=2)
legend("right", "lgamma(1+x)", col=2, lwd=2)
} # Rmpfr only
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.