log1mexp | R Documentation |
\mathrm{log}
(1 - \mathrm{exp}
(-a)) and
\log(1 + \exp(x))
Numerically OptimallyCompute f(a) = log(1 - exp(-a)) quickly and numerically accurately.
log1mexp()
is simple pure R code;
log1mexpC()
is an interface to R C API (‘Mathlib’ / ‘Rmath.h’)
function.
log1pexpC()
is an interface to R's ‘Mathlib’ double
function log1pexp()
which computes \log(1 + \exp(x))
,
accurately, notably for large x
, say, x > 720
.
log1mexp (x)
log1mexpC(x)
log1pexpC(x)
x |
numeric vector of positive values. |
Martin Maechler
Martin Mächler (2012).
Accurately Computing \log(1-\exp(-|a|))
;
https://CRAN.R-project.org/package=Rmpfr/vignettes/log1mexp-note.pdf.
The log1mexp()
function in CRAN package copula,
and the corresponding vignette (in the ‘References’).
l1m.xy <- curve(log1mexp(x), -10, 10, n=1001)
stopifnot(with(l1m.xy, all.equal(y, log1mexpC(x))))
x <- seq(0, 710, length=1+710*2^4); stopifnot(diff(x) == 1/2^4)
l1pm <- cbind(log1p(exp(x)),
log1pexpC(x))
matplot(x, l1pm, type="l", log="xy") # both look the same
iF <- is.finite(l1pm[,1])
stopifnot(all.equal(l1pm[iF,2], l1pm[iF,1], tol=1e-15))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.