Description Usage Arguments Value Note Author(s) See Also Examples
View source: R/simplyValidate.R
Validate a model (to its original data)
1 2 3 4 5 6 7 8 9 10 | simplyValidate(model, ..., verbosity = 0)
## S3 method for class 'EMLassoGLoMo'
simplyValidate(model,
ds=model$result[[1]]$ds, out=model$result[[1]]$out,
wts=rep(1, nrow(ds)),
imputeDs2FitDsProperties=model$imputeDs2FitDsProperties,
imputations=10, ..., type.measure="auc",
keepResultPerLambda=FALSE, nobs=1, unpenalized=FALSE,
verbosity=0)
|
model |
model fit |
... |
for flexibility in 'derived' implementation |
verbosity |
The higher this value, the more levels of progress and debug information is displayed (note: in R for Windows, turn off buffered output) |
ds |
dataset with predictors |
out |
vector (binary factor) of outcomes |
wts |
vector of weights (defaults to equal weights for all rows) |
imputeDs2FitDsProperties |
see
|
imputations |
Number of multiple imputations on the complete dataset (defaults to 10) |
type.measure |
see |
keepResultPerLambda |
if |
nobs |
how many observations are simulated for each row with missing data |
unpenalized |
if |
object that has as class: "sv." pasted before the class
of model
. Normally, model
will will be the
return value of EMLasso
, so this result is
mainly the same as a cv.glmnet
. The
added/altered items are:
glmnet.fit |
is now the
|
resultPerLambda |
matrix
with one column per imputation. The top rows are the
estimates for the criterion per lambda, below that are
their SD estimates. Not present if
|
aids to generalize validation
Nick Sabbe nick.sabbe@ugent.be
1 2 3 4 5 6 7 | y<-rbinom(nrow(iris), 1, 0.5)
iris.cpy<-randomNA(iris, n=0.1)
iris.emlognet<-EMLasso(ds=numdfr(iris.cpy), out=y,
lambdas=c(0.03,0.002,0.0003), nrOfSamplesPerMDRow=7, verbosity=2,
convergenceChecker=convergenceCheckCreator(minIt=5, maxIt=10))
sfStop()
iris.sv.emlognet<-simplyValidate(iris.emlognet, verbosity=2)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.