thresHolding: Simple threshold selection for some sets of variables...

Description Usage Arguments Value Note Author(s) Examples

View source: R/thresHolding.R

Description

Simple threshold selection for some sets of variables selected by EMLasso

Usage

1
2
3
4
5
6
7
8
9
  thresHolding(cvob, coefsUsed = NULL, reps = 500,
    checkThres = seq(0, 1, length.out = 101),
    ds = cvob$glmnet.fit$result[[1]]$ds,
    out = cvob$glmnet.fit$result[[1]]$out,
    wts = rep(1, nrow(ds)),
    imputeDs2FitDsProperties = cvob$glmnet.fit$imputeDs2FitDsProperties,
    ..., niceNames = c(names(coefsUsed)),
    newWindow = FALSE, showWanted = c(0.5, 0.75),
    showThres = 10, verbosity = 0)

Arguments

cvob

result of a call to crossValidate.EMLassoGLoMo

coefsUsed

list holding vectors of names of columns (after conversion). Thresholds are selected for each of the sets of variables.

reps

number of repeats of imputation / crossvalidation

checkThres

set of values between 0 and 1 where the TPR / FPR are evaluated

ds

dataset (defaults to the one passed to EMLasso)

out

outcome vector (defaults to the one passed to EMLasso)

wts

weight vector per observation (defaults to the one passed to EMLasso)

imputeDs2FitDsProperties

see imputeDs2FitDs and EMLasso

...

passed on to collectImputationModels

niceNames

display names for each of the sets of variabels, to be used n the titles of the plots

newWindow

if TRUE (not the default), a new window is created for the plots

showWanted

if a vector of two numbers, the first is indicated in a green vertical line, and the second as a green horizontal line

showThres

see plotROCFromRepPredProb

verbosity

The higher this value, the more levels of progress and debug information is displayed (note: in R for Windows, turn off buffered output)

Value

a list, holding the following items:

Note

Thresholds are selected by finding the highest TPR with a maximal FPR of 50

Author(s)

Nick Sabbe nick.sabbe@ugent.be

Examples

1
2
3
4
5
6
7
8
y<-rbinom(nrow(iris), 1, 0.5)
iris.cpy<-randomNA(iris, n=0.1)
iris.emlognet<-EMLasso(ds=numdfr(iris.cpy), out=y,
	lambdas=c(0.03,0.002,0.0003), nrOfSamplesPerMDRow=7, verbosity=0,
	convergenceChecker=convergenceCheckCreator(minIt=5, maxIt=10))
sfStop()
iris.cv.emlognet<-crossValidate(iris.emlognet, verbosity=0)
thresHolding(iris.cv.emlognet, coefsUsed=list(onlySepL=c("Sepal.Length"), onlySpecies=c("Speciesversicolor", "Speciesvirginica")), reps=10, verbosity=2)

EMLasso documentation built on May 2, 2019, 5:49 p.m.